

January 16, 2009

Mr. Victor Alvarez United States Environmental Protection Agency Region 1, Suite 1100 1 Congress Street Boston, MA 02114-2023

RE: Notice of Intent for Remediation General Permit

Re-Submittal

Common Street Trust Building 102-104 Trapelo Road Belmont, Massachusetts MADEP RTN 3-23300

Dear Mr. Alvarez,

As per our prior conversations Coler & Colantonio, Inc. is re-submitting this Remediation General Permit (RGP) - Notice of Intent (NOI) associated with the discharge of water from a sump system that is located in the basement of 102-104 Trapelo Road located in Belmont, Massachusetts (the "Site"). The initial RGP was submitted to the United States Environmental Protection Agency (EPA) on May 22, 2006. The purpose of the re-submittal is to provide EPA with the necessary documentation for their record.

The RGP is for the discharge of water from a basement sump system, which has become contaminated with volatile organic compounds, dissolved lead and cyanide, to a municipal storm water catch basin. Basement sump system has been operating at the Site for the past 15 to 20 years or so. In 2006 the sump system was converted to a Pump & Treat (P&T) system in order to mitigate an Imminent Hazard (IH) condition and to implement Immediate Response Actions (IRAs) that have been reported to the Massachusetts Department of Environmental Protection (MADEP) and is being addressed under the Release Tracking Number (RTN) 3-23300. The sump system was modified into the P&T system in 2006 and consists of three previously installed sump pumps that are manifolded together by PVC piping so that the water can be treated by an activated coconut carbon vessel prior to discharging into the storm drain located outside the southwest corner of the Site building.

Coler & Colantonio has been collecting influent and effluent samples to monitor the P&T system for volatile organic compounds (VOCs), dissolved lead, and total cyanide since May 2006 and has been recording the discharged water volumes by an inline water meter. Coler & Colantonio has been reviewing the data and if the data indicated that there is "break-through" in the carbon then the carbon was exchanged. The monitoring and P&T system maintenance

781.982.5400

Fax: 781.982.5490

activities have been documented in the Remedial Monitoring Reports and the IRA Status Reports that were prepared in accordance with 310 CMR 40.0000, pursuant to the Massachusetts Contingency Plan (MCP), and have been submitted to the MADEP over the past several years.

Coler & Colantonio, Inc. is the environmental consultant for the Site and will be the contractor that will operate the P&T system on behalf of Jenkins-Starr, LLC., the facility/site owner. The following is the contact information for the owner and operator:

Coler & Colantonio, Inc.

Jenkins-Starr, LLC.

101 Accord Park Drive

Norwell, MA. 02061

Phone: 781/982-5400

Jenkins-Starr, LLC.

70 Industrial Drive

Holden, MA. 01520

Phone: 978/ 263-1086

Contact: Mr. Ronald K. Burns, LSP

Division Manager,

Contact: Mr. Christopher Starr,

Managing Partner

Environmental Division

In accordance with the RGP-NOI, the State Application Form BRPWM 12 and associated payment are **not applicable** to this project because the Site is currently a MADEP MCP Site pursuant to 310 CMR 40.0000.

If you have any questions or need additional information please do not hesitate to contact the undersigned.

Sincerely,

COLER & COLANTONIO, INC.

SIM

Glen A. Cote Project Manager Ronald K. Burns, PE, LSP

Division Manager – Environmental Services

cc: C. Starr

J. Wang, MADEP

Attachments:

1. Remedial General Permit - Notice of Intent

781.982.5400

Fax: 781.982.5490

- 2. Site Locus
- 3. Process Flow Diagram
- 4. Discharge Maps
- 5. Laboratory Analytical Reports
- 6. Best Management Practice Plan

B. Suggested Form for Notice of Intent (NOI) for the Remediation General Permit

1. General site information. Please provide the following information about the site:

a) Name of facility/site :	-		Facility/site address:				
Location of facility/site : longitude: latitude:							
	5812,5531						
b) Name of facility/site owner:			Town:				
Email address of owner:		State:	Zip:	County:			
Telephone no.of facility/site owner :							
Fax no. of facility/site owner :			Owner is (check one): 1. Federal 2. State/Tribal				
Address of owner (if different from site):			3. Private 4. other, if so, describe:				
Street:							
Town:		State:	Zip:	County:			
c) Legal name of operator :	Operator telep	ephone no:					
Operator fax r			no.: Operator email:				
Operator contact name and title:							

Address of opera	ator (if different fr	rom owner):	Street:					
Town:			State:	Zip:	County:			
1. Has a prior NF 2. Has a prior NF	PDES application (owing: sion been granted for the discharge Form 1 & 2C) ever been filed for the area defined by 40 CFR 122.2? Ye discharge covered under the MA	the discharge? \overline{Y}	es No , if "yes," date a	and tracking #: e permitting? Yes No			
e) Is site/facility subject to any State permitting or other action which is causing the generation of discharge? Yes No If "yes," please list: 1. site identification # assigned by the state of NH or MA: 2. permit or license # assigned: 3. state agency contact information: name, location, and telephone number: f) Is the site/facility covered by any other EPA permit, including: 1. multi-sector storm water general permit? Y N, if Y, number: 2. phase I or II construction storm water general permit? Y N, if Y, number: 3. individual NPDES permit? Y N, if Y, number: 4. any other water quality related permit? Y N, if Y, number:								
2. Discharge in	nformation. Pleas	se provide information about the di	ischarge, (attachi	ing additional sheets as needed)	including:			
a) Describe the d	ischarge activities	for which the owner/applicant is s	eeking coverage	:				
b) Provide the following information about each discharge:	Average flow Is maximum flow a design value ? YN For average flow, include the units and appropriate notation if this value is a design value or estimate if not available.							
3) Latitude and longitude of each discharge within 100 feet: pt.1:long lat; pt.2: long lat; pt.3: long lat; pt.4:long lat; pt.5: long lat; pt.6:long lat; pt.7: long lat; pt.8:long lat; etc.								

4) If hydrostatic testing, total volume of the discharge (gals):	5) Is the discharge intermittent or seasonal? Is discharge ongoing Yes No?
c) Expected dates of discharge (mm/dd/yy): starte	nd
d) Please attach a line drawing or flow schematic showing water flow sources of intake water, 2. contributing flow from the operation,	ow through the facility including: 3. treatment units, and 4. discharge points and receiving waters(s).

3. Contaminant information. In order to complete this section, the applicant will need to take a minimum of one sample of the untreated water and have it analyzed for **all** of the parameters listed in Appendix III. Historical data, (i.e., data taken no more than 2 years prior to the effective date of the permit) may be used if obtained pursuant to: i. Massachusetts' regulations 310 CMR 40.0000, the Massachusetts Contingency Plan ("Chapter 21E"); ii. New Hampshire's Title 50 RSA 485-A: Water Pollution and Waste Disposal or Title 50 RSA 485-C: Groundwater Protection Act; or iii. an EPA permit exclusion letter issued pursuant to 40 CFR 122.3, provided the data was analyzed with test methods that meet the requirements of this permit. Otherwise, a new sample shall be taken and analyzed.

a) Based on the analysis of the sample(s) of the untreated influent, the applicant must check the box of the sub-categories that the potential discharge falls within.

Gasoline Only	VOC Only	Primarily Metals	Urban Fill Sites	Contaminated Sumps	Mixed Contaminants	Aquifer Testing
Fuel Oils (and Other Oils) only	VOC with Other Contaminants	Petroleum with Other Contaminants	Listed Contaminated Sites	Contaminated Dredge Condensates	Hydrostatic Testing of Pipelines/Tanks	Well Development or Rehabilitation

b) Based on the analysis of the untreated influent, the applicant must indicate whether each listed chemical is **believed present** or **believed absent** in the potential discharge. Attach additional sheets as needed.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample	Analytical Method	Minimum Level (ML) of	Maximum daily value		Avg. daily value	
			(1 min- imum)	(e.g., grab)	Used (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
1. Total Suspended Solids										
2. Total Residual Chlorine										
3. Total Petroleum Hydrocarbons										
4. Cyanide										
5. Benzene										
6. Toluene										
7. Ethylbenzene										
8. (m,p,o) Xylenes										
9. Total BTEX ⁴										

⁴BTEX = Sum of Benzene, Toluene, Ethylbenzene, total Xylenes.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method	Minimum Level (ML) of	Maximum daily	value	Avg. daily value	2
			(1 min- imum)	grab)	Used (method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
10. Ethylene Dibromide (1,2- Dibromo-methane)										
11. Methyl-tert-Butyl Ether (MtBE)										
12. tert-Butyl Alcohol (TBA)										
13. tert-Amyl Methyl Ether (TAME)										
14. Naphthalene										
15. Carbon Tetra- chloride										
16. 1,4 Dichlorobenzene										
17. 1,2 Dichlorobenzene										
18. 1,3 Dichlorobenzene										
19. 1,1 Dichloroethane										
20. 1,2 Dichloroethane										
21. 1,1 Dichloroethylene										
22. cis-1,2 Dichloro- ethylene										
23. Dichloromethane (Methylene Chloride)										
24. Tetrachloroethylene										

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method Used	Minimum Level (ML) of Test	Maximum daily v	alue	Avg. daily Value	
			(1 min- imum)	grab)	(method #)	Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
25. 1,1,1 Trichloroethane										
26. 1,1,2 Trichloroethane										
27. Trichloroethylene										
28. Vinyl Chloride										
29. Acetone										
30. 1,4 Dioxane										
31. Total Phenols										
32. Pentachlorophenol										
33. Total Phthalates ⁵ (Phthalate esthers)										
34. Bis (2-Ethylhexyl) Phthalate [Di- (ethylhexyl) Phthalate]										
35. Total Group I Polycyclic Aromatic Hydrocarbons (PAH)										
a. Benzo(a) Anthracene										
b. Benzo(a) Pyrene										
c. Benzo(b)Fluoranthene										
d. Benzo(k) Fluoranthene										
e. Chrysene										

⁵The sum of individual phthalate compounds.

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method Used	Minimum Level (ML) of	Maximum daily v	alue	Average daily value	
			(1 min- imum)	grab)	(method #)	Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
f. Dibenzo(a,h) anthracene										
g. Indeno(1,2,3-cd) Pyrene										
36. Total Group II Polycyclic Aromatic Hydrocarbons (PAH)										
h. Acenaphthene										
i. Acenaphthylene										
j. Anthracene										
k. Benzo(ghi) Perylene										
l. Fluoranthene										
m. Fluorene										
n. Naphthalene-										
o. Phenanthrene										
p. Pyrene										
37. Total Polychlorinated Biphenyls (PCBs)										
38. Antimony										
39. Arsenic										
40. Cadmium										
41. Chromium III										
42. Chromium VI										

PARAMETER	Believe Absent	Believe Present	# of Samples	Type of Sample (e.g.,	Analytical Method Used (method #)	Minimum Level (ML) of	Maximum daily value		Avg. daily value	
			(1 min- imum)	grab)		Test Method	concentration (ug/l)	mass (kg)	concentration (ug/l)	mass (kg)
43. Copper										
44. Lead										
45. Mercury										
46. Nickel										
47. Selenium										
48. Silver										
49. Zinc										
50. Iron										
Other (describe):										

c) For discharges where **metals** are believed present, please fill out the following:

Step 1: Do any of the metals in the influent have a reasonable potential to exceed the effluent limits in Appendix III (i.e., the limits set at zero to five dilutions)? YN	If yes, which metals?
Step 2: For any metals which have reasonable potential to exceed the Appendix III limits, calculate the dilution factor (DF) using the formula in Part I.A.3.c) (step 2) of the NOI instructions or as determined by the State prior to the submission of this NOI. What is the dilution factor for applicable metals? Metals: DF:	Look up the limit calculated at the corresponding dilution factor in Appendix IV. Do any of the metals in the influent have the potential to exceed the corresponding effluent limits in Appendix IV (i.e., is the influent concentration above the limit set at the calculated dilution factor)? Y N If "Yes," list which metals:

4. Treatment system informa	Treatment system information. Please describe the treatment system using separate sheets as necessary, including:							
a) A description of the treatn	nent system, inc	cluding a schematic	of the proposed	d or existing treat	tment syste	m:		
, 1	,		1 1	C	J			
1) 11 , (C 1 1' 11	E 4 1	A · ·	0.17			F 1' 1' 1 1	D 614	CAC 51
b) Identify each applicable treatment unit (check all	Frac. tank	Air stripper	Oll/wai	er separator		Equalization tanks	Bag filter	GAC filter
that apply):								
	Chlorination	Dechlorination	on Other (please describe):			•	
c) Proposed average and ma	ximum flow ra	ates (gallons per m	inute) for the di	scharge and the d	lesign flow	rate(s) (gallons per r	ninute) of the treatr	nent system:
Average flow rate of dischar		Maximum flow				ign flow rate of treatr		
d) A description of chemical	additives being	used or planned to	o be used (attacl	n MSDS sheets):				
,		, r . p						
5. Receiving surface water(s)	. Please provi	de information abo	ut the receiving	water(s), using so	eparate she	ets as necessary:		
a) Identify the discharge path	nway:	Direct	Within facility	y Storm dra	ain	River/brook	Wetlands	Other (describe):
b) Provide a narrative descrip	otion of the disc	charge pathway, in	cluding the nam	e(s) of the receiv	ing waters:			

c) Attach a detailed map(s) indicating the site location and location of the outfall to the receiving water: 1. For multiple discharges, number the discharges sequentially. 2. For indirect dischargers, indicate the location of the discharge to the indirect conveyance and the discharge to surface water The map should also include the location and distance to the nearest sanitary sewer as well as the locus of nearby sensitive receptors (based on USGS topographical mapping), such as surface waters, drinking water supplies, and wetland areas.
d) Provide the state water quality classification of the receiving water,
e) Provide the reported or calculated seven day-ten year low flow (7Q10) of the receiving watercfs Please attach any calculation sheets used to support stream flow and dilution calculations.
f) Is the receiving water a listed 303(d) water quality impaired or limited water? Yes No If yes, for which pollutant(s)?
Is there a TMDL? Yes No If yes, for which pollutant(s)?
6. Results of Consultation with Federal Services: Please provide the following information according to requirements of Part I.B.4 and Appendices II and VII.
a) Are any listed threatened or endangered species, or designated critical habitat, in proximity to the discharge? YesNo Has any consultation with the federal services been completed? No or is consultation underway? No What were the results of the consultation with the U.S. Fish and Wildlife Service and/or National Marine Fisheries Service (check one): a "no jeopardy" opinion? or written concurrence on a finding that the discharges are not likely to adversely affect any endangered species or critical habitat?
b) Are any historic properties listed or eligible for listing on the National Register of Historic Places located on the facility or site or in proximity to the discharge? Yes No Have any state or tribal historic preservation officer been consulted in this determination (Massachusetts only)? Yes No

Please provide any supplemental information. Attach any analytical data used to support the application. Attach any certification(s) required by the general permi	
	t.

8. Signature Requirements: The Notice of Intent must be signed by the operator in accordance with the signatory requirements of 40 CFR Section 122.22, including the following certification:

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, I certify that the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I certify that I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations.

Facility/Site Name: Common Street Trust Property
Operator signature:
Title:
Contractor:Ronald K, Burns, Coler & Colantonio, Inc.
January 14, 2009 Date:

B. Submission of NOI to EPA - All operators applying for coverage under this General Permit must submit a written Notice of Intent (NOI) to EPA. Signed and completed NOI forms and attachments must be submitted to EPA-NE at:

US Environmental Protection Agency RGP-NOC Processing Municipal Assistance Unit (CMU), 1 Congress Street, Suite 1100 Boston, MA 02114-2023

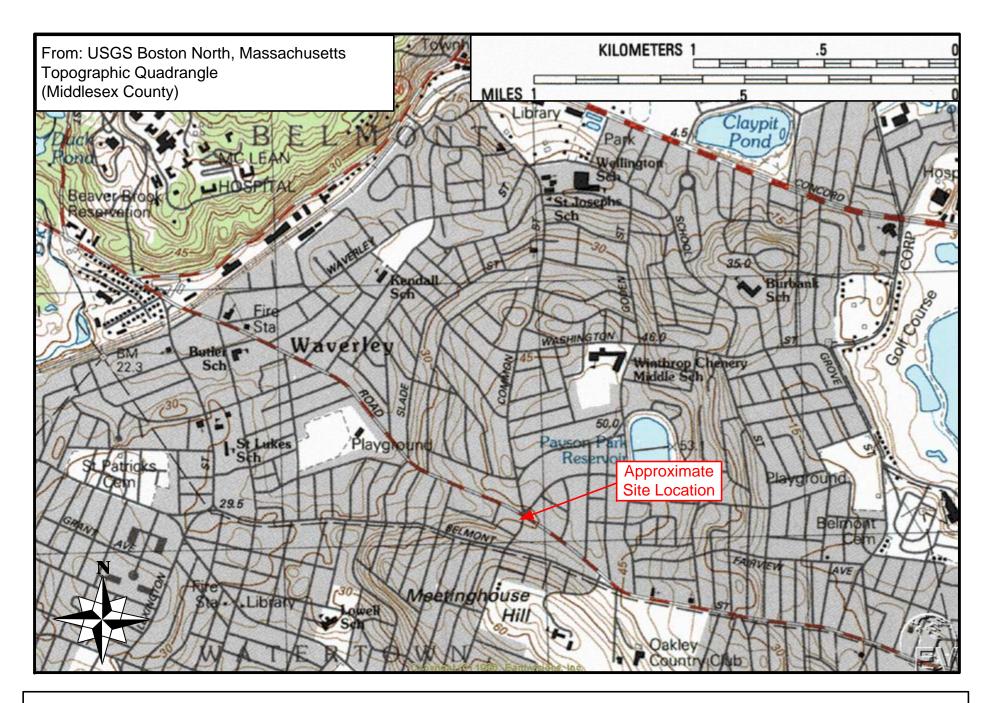
or electronically mailed to <u>NPDES.Generalpermits@epa.gov</u>, or faxed to the EPA Office at 617-918-0505.

If filling out the suggested NOI form electronically on EPA's website, the signature page must be signed and faxed or mailed to EPA at the phone number or address listed in Section I.B. below.

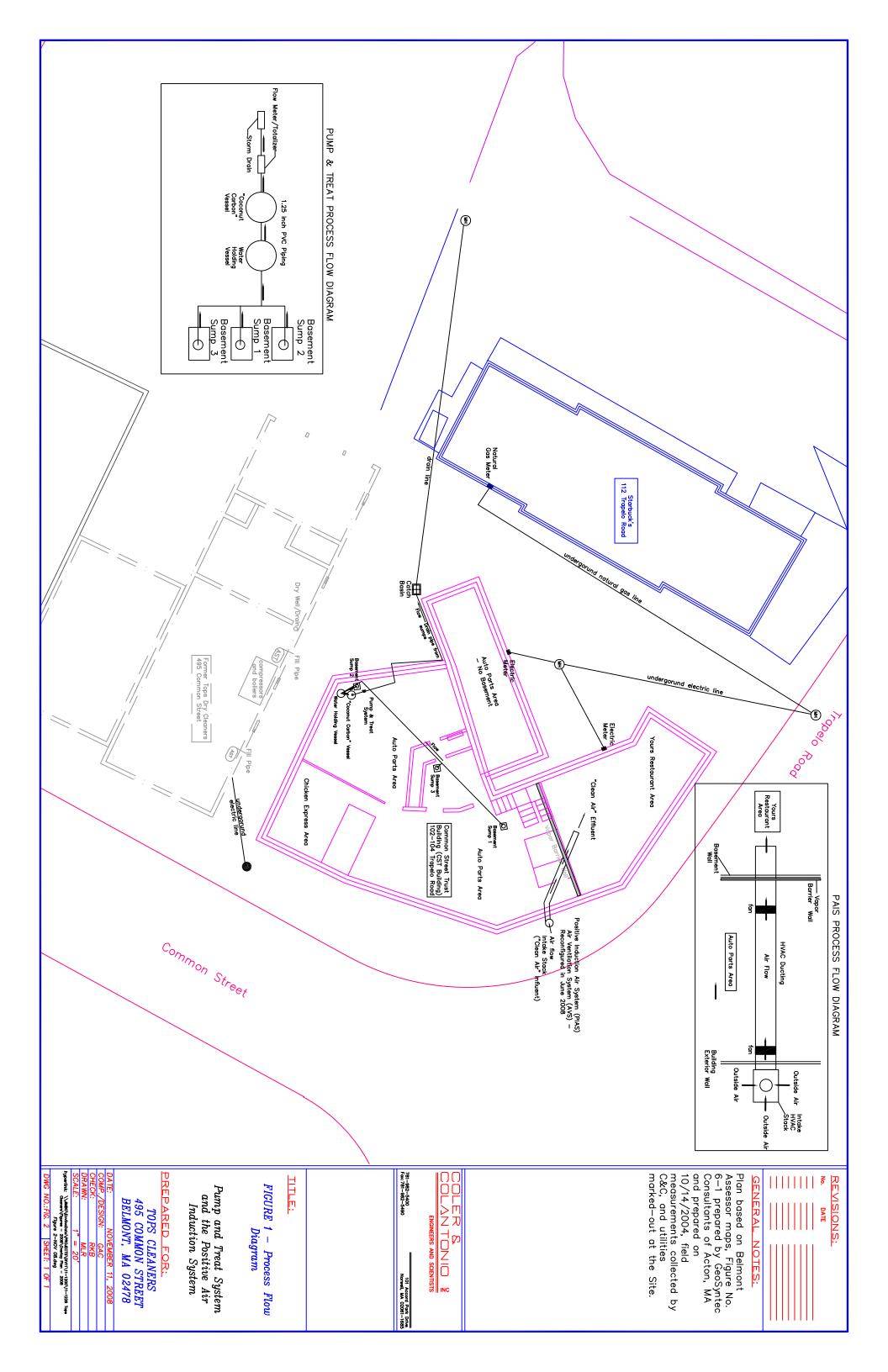
- 1. Filing with the states A copy of any NOI form filed with EPA-NE must also be filed with state agencies. The state agency may elect to develop a state specific form or other information requirements.
- a) <u>Discharges in Massachusetts</u> In addition to the NOI, permit applicants must submit copies of the State Application Form BRPWM 12, Request for General Permit coverage for the RGP. The application form and the Transmittal Form for Permit Application and Payment, may be obtained from the Massachusetts Department of Environmental Protection (MA DEP) website at www.state.ma.us/dep. Municipalities are fee-exempt, but should send a copy of the transmittal form to that address for project tracking purposes. All applicants should keep a copy of the transmittal form and a copy of the application package for their records.
 - 1) A copy of the NOI, the transmittal form, a copy of the check, and Form BRPWM 12 should be sent to:

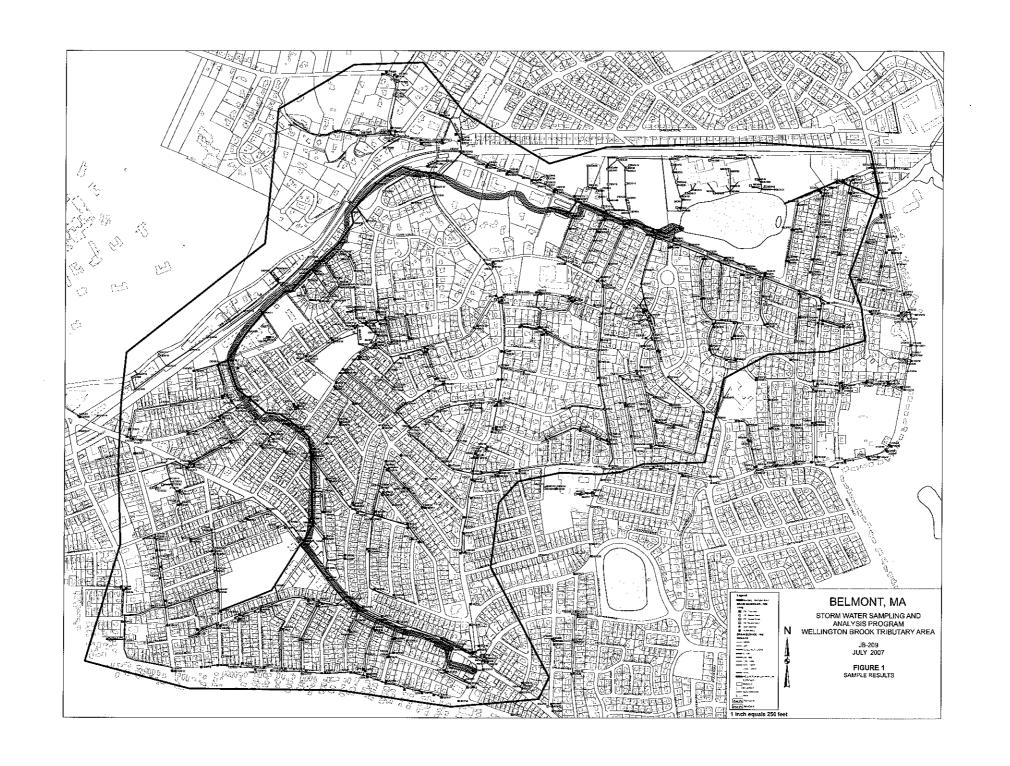
Massachusetts Department of Environmental Protection Division of Watershed Management 627 Main Street, 2nd floor Worcester, MA 01608

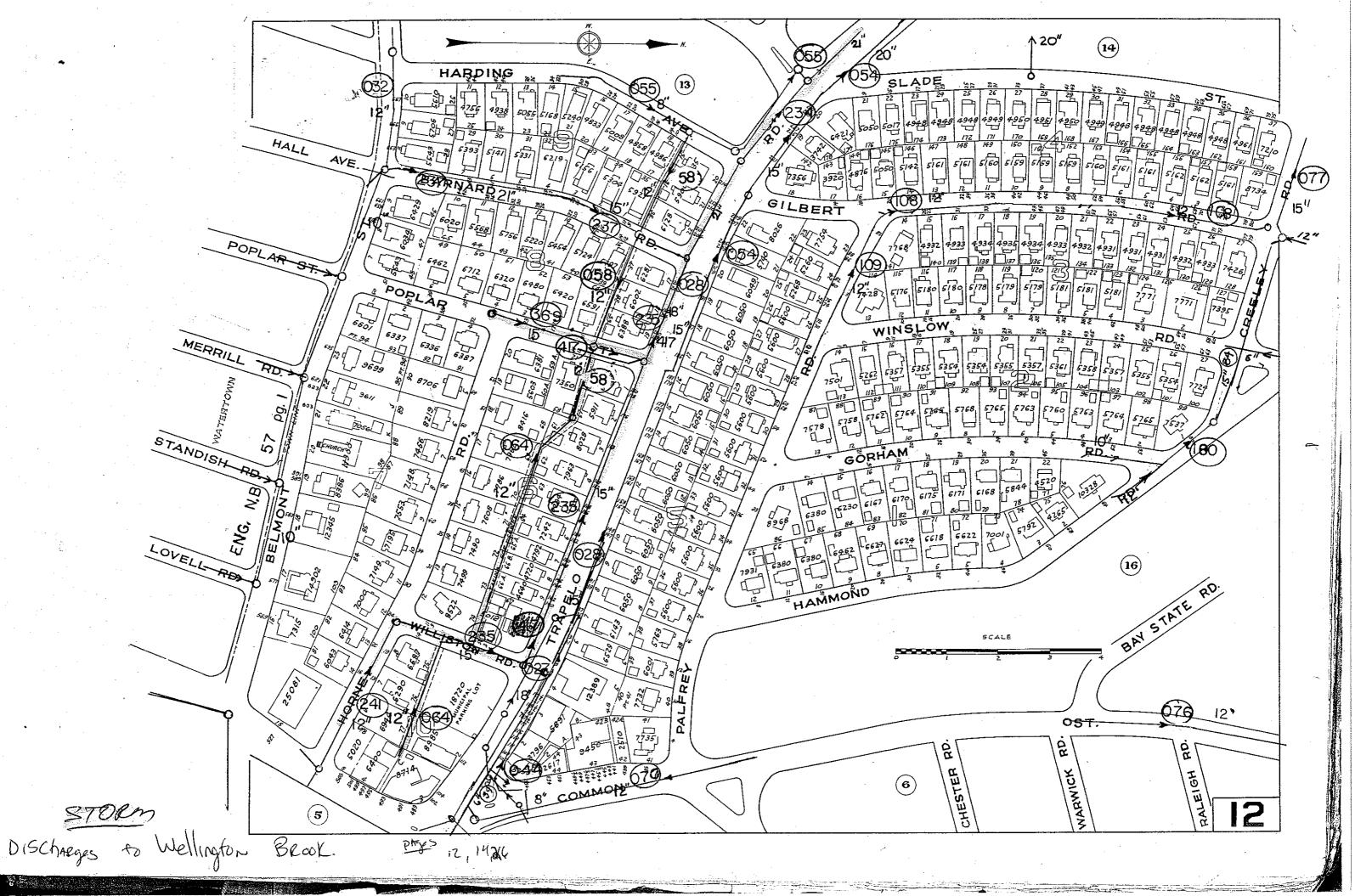
2) A copy of the transmittal form and the appropriate fee should be sent to:


Massachusetts Department of Environmental Protection P.O. Box 4062 Boston, MA 02111

Please note: Applicants for discharges in Massachusetts should note that under 310 CMR 40.000, *as a matter of state law*, the general permit only applies to discharges that are **not** subject to the Massachusetts Contingency Plan (MCP) and 310 CMR 40.000. Therefore, discharges subject to the MCP are **not** required to fill out and submit the State Application Form BRPWM 12 or pay the state fees. However, they must submit a NOI to EPA.


b) <u>Discharges in New Hampshire</u> - applicants must provide a copy of the Notice of Intent to:


New Hampshire Department of Environmental Services Water Division
Wastewater Engineering Bureau
P.O. Box 95
Concord, New Hampshire 03302-0095.


<u>2. Filing with Municipalities</u> - A copy of the NOI must be submitted to the municipality in which the proposed discharge would be located.

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: Coler & Colantonio Laboratory Job Number: L0600756

Address: 101 Accord Park Drive

Norwell, MA 02061 Date Received: 17-JAN-2006

Attn: Mr. Mark Germano Date Reported: 25-JAN-2006

Project Number: 11-1226 Delivery Method: Alpha

Site: NPDES PERMIT/TOP'S

ALPHA SAMPLE NUMBER CLIENT IDENTIFICATION SAMPLE LOCATION

L0600756-01 SUMP DISCHARGE BELMONT, MA

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by: Technical Director

01250615:48 Page 1 of 11

ALPHA ANALYTICAL LABORATORIES NARRATIVE REPORT

Laboratory Job Number: L0600756

Report Submission

This report replaces the report issued on January 24,2006. The report has been amended to include the compounds MBTE, TBA, TAME, and 1,4 Dioxane for L0600756.

Volatile Organics by Method 624

L0600756-01 has elevated limits of detection due to the 50x dilutions required by the elevated concentrations of non-target compounds in the sample.

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0600756-01 Date Collected: 13-JAN-2006 15:30

SUMP DISCHARGE

Date Received: 17-JAN-2006 Sample Matrix: Date Reported : 25-JAN-2006 WATER

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 4-Vial

PARAMETER	RESULT	UNITS	RDL	REF METHOD		TE	ID
					PREP	ANAL	
Pesticides by GC 504				14 504.1	0104 10.40	0104 12.1)
1,2-Dibromoethane	ND	ug/l	0.019	14 504.1	0124 10:40	0124 13:3	36 JB
1,2-Dibromo-3-chloropropane	ND ND	_	0.019				
1,2-DIDIOMO-3-CHIOLOPLOPANE	ND	ug/l	0.019				
Volatile Organics by GC/MS 6	24			5 624		0120 14:3	31 MM
Methylene chloride	ND	ug/l	250				
1,1-Dichloroethane	ND	ug/l	75.				
Chloroform	ND	ug/l	75.				
Carbon tetrachloride	ND	ug/l	50.				
1,2-Dichloropropane	ND	ug/l	180				
Dibromochloromethane	ND	ug/l	50.				
1,1,2-Trichloroethane	ND	ug/l	75.				
2-Chloroethylvinyl ether	ND	ug/l	500				
Tetrachloroethene	290	ug/l	75.				
Chlorobenzene	ND	ug/l	180				
Trichlorofluoromethane	ND	ug/l	250				
1,2-Dichloroethane	ND	ug/l	75.				
l,1,1-Trichloroethane	ND	ug/l	100				
Bromodichloromethane	ND	ug/l	50.				
rans-1,3-Dichloropropene	ND	ug/l	75.				
cis-1,3-Dichloropropene	ND	ug/l	75.				
Bromoform	ND	ug/l	50.				
1,1,2,2-Tetrachloroethane	ND	ug/l	50.				
Benzene	ND	ug/l	50.				
Toluene	ND	ug/l	50.				
Ethylbenzene	ND	ug/l	50.				
Chloromethane	ND	ug/l	500				
Bromomethane	ND	ug/l	250				
Jinyl chloride	ND	ug/l	100				
Chloroethane	ND	ug/l	100				
1,1-Dichloroethene	ND	ug/l	50.				
trans-1,2-Dichloroethene	ND	ug/l	75.				
cis-1,2-Dichloroethene	ND	ug/l	50.				
richloroethene	ND	ug/l	50.				
l,2-Dichlorobenzene	ND	ug/l	250				
1,3-Dichlorobenzene	ND	ug/1	250				
l,4-Dichlorobenzene	ND	ug/l	250				
o/m-Xylene	ND	ug/l	100				
o-xylene	ND	ug/l	50.				

Comments: Complete list of References and Glossary of Terms found in Addendum I

Laboratory Sample Number: L0600756-01

SUMP DISCHARGE

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Volatile Organics by GC/MS 62	24 cont'd			5 624	0120 14:31 MM
Xylene (Total)	ND	ug/l	100		
Styrene	ND	ug/l	50.		
Acetone	ND	ug/l	500		
Carbon disulfide	ND	ug/l	250		
2-Butanone	ND	ug/l	500		
Vinyl acetate	ND	ug/l	1000		
4-Methyl-2-pentanone	ND	ug/l	500		
2-Hexanone	ND	ug/l	500		
Acrolein	ND	ug/l	400		
Acrylonitrile	ND	ug/l	500		
Methyl tert butyl ether	5500	ug/l	1000		
1,4-Dioxane	ND	ug/l	100000		
Tert-Butyl Alcohol	ND	ug/l	5000		
Tertiary-Amyl Methyl Ether	ND	ug/l	1000		
Surrogate(s)	Recovery		QC Cri	teria	
Pentafluorobenzene	104.	8	80-120		
Fluorobenzene	106.	%	80-120		
4-Bromofluorobenzene	101.	%	80-120		

 $\hbox{{\tt Comments:}} \ \hbox{{\tt Complete list of References and Glossary of Terms found in Addendum I} \\$

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH DUPLICATE ANALYSIS

Laboratory Job Number: L0600756

Parameter	Value 1	Value 2	Units	RPD	RPD Lin	nits
Volatile Organics	s by GC/MS 624	for sampl	e(s) 01	(L0600573-0	1. WG2270	088-2)
Methylene chloride	ND	ND	ug/l	NC	30	,
1,1-Dichloroethane	ND	ND	ug/l	NC	30	
Chloroform	ND	ND	ug/l	NC	30	
Carbon tetrachloride	ND	ND	ug/l	NC	30	
1,2-Dichloropropane	ND	ND	ug/l	NC	30	
Dibromochloromethane	ND	ND	ug/l	NC	30	
1,1,2-Trichloroethane	ND	ND	ug/l	NC	30	
Tetrachloroethene	ND	ND	ug/l	NC	30	
Chlorobenzene	ND	ND	ug/l	NC	30	
Trichlorofluoromethane	ND	ND	ug/l	NC	30	
1,2-Dichloroethane	ND	ND	ug/l	NC	30	
1,1,1-Trichloroethane	ND	ND	ug/l	NC	30	
Bromodichloromethane	ND	ND	ug/l	NC	30	
trans-1,3-Dichloropropene	ND	ND	ug/l	NC	30	
cis-1,3-Dichloropropene	ND	ND	ug/l	NC	30	
Bromoform	1.2	1.4	ug/l	15	30	
1,1,2,2-Tetrachloroethane	ND	ND	ug/l	NC	30	
Benzene	ND	ND	ug/l	NC	30	
Toluene	ND	ND	ug/l	NC	30	
Ethylbenzene	ND	ND	ug/l	NC	30	
Chloromethane	ND	ND	ug/l	NC	30	
Bromomethane	ND	ND	ug/l	NC	30	
Vinyl chloride	ND	ND	ug/l	NC	30	
Chloroethane	ND	ND	ug/l	NC	30	
1,1-Dichloroethene	ND	ND	ug/l	NC	30	
trans-1,2-Dichloroethene	ND	ND	ug/l	NC	30	
cis-1,2-Dichloroethene	ND	ND	ug/l	NC	30	
Trichloroethene	ND	ND	ug/l	NC	30	
1,2-Dichlorobenzene	ND	ND	ug/1	NC	30	
1,3-Dichlorobenzene	ND	ND	uq/l	NC	30	
l,4-Dichlorobenzene	ND	ND	ug/1	NC	30	
p/m-Xylene	ND	ND	ug/l	NC	30	
o-Xylene	ND	ND	ug/1	NC	30	
XYLENE (TOTAL)	ND	ND	ug/l	NC	30	
Styrene	ND	ND	ug/l	NC	30	
Acetone	ND	ND	ug/1	NC	30	
Carbon disulfide	ND	ND	ug/l	NC	30	
2-Butanone	ND	ND	ug/l	NC	30	
Jinyl acetate	ND	ND	ug/1	NC	30	
1-Methyl-2-pentanone	ND	ND	ug/l	NC	30	
2-Hexanone	ND	ND	ug/l	NC	30	
Acrolein	ND	ND	ug/l	NC	30	
Acrylonitrile	ND	ND	ug/l	NC	30	
Surrogate(s)	Recov	ery				QC Criteria
Pentafluorobenzene	101.	91.0	%			80-120
Fluorobenzene	102.	94.0	%			80-120
4-Bromofluorobenzene	111.	99.0	%			80-120

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH SPIKE ANALYSES

Laboratory Job Number: L0600756

Parameter	% Recovery	QC Criteria	
Pesticides by GC 504 LCS	for sample(s)	01 (WG227604-2)	
1,2-Dibromoethane	99	(
1,2-Dibromo-3-chloropropane	108		
Volatile Organics by GC/MS 624	LCS for sample	(s) 01 (WG227088-11)	
Methylene chloride	103	10-221	
1,1-Dichloroethane	90	59-155	
Chloroform	81	51-138	
Carbon tetrachloride	79	70-140	
1,2-Dichloropropane	96	10-210	
Dibromochloromethane	87	53-149	
1,1,2-Trichloroethane	95	52-150	
2-Chloroethylvinyl ether	107	10-305	
Tetrachloroethene	92	64-148	
Chlorobenzene	96	37-160	
Trichlorofluoromethane	87	17-181	
1,2-Dichloroethane	84	49-155	
1,1,1-Trichloroethane	84	52-162	
Bromodichloromethane	83	35–155	
trans-1,3-Dichloropropene	85	17-183	
cis-1,3-Dichloropropene	92	10-227	
Bromoform	84	45-169	
1,1,2,2-Tetrachloroethane	94	46-157	
Benzene	98	37-151	
Toluene	97	47-150	
Ethylbenzene	100	37-162	
Chloromethane	67	10-273	
Bromomethane	88	10-242	
Vinyl chloride	81	10-251	
Chloroethane	104	14-230	
1,1-Dichloroethene	91	10-234	
trans-1,2-Dichloroethene	93	54-156	
cis-1,2-Dichloroethene	95	60-140	
Trichloroethene	95	71-157	
1,2-Dichlorobenzene	94	18-190	
1,3-Dichlorobenzene	95	59-156	
1,4-Dichlorobenzene	96	18-190	
p/m-Xylene	103	40-160	
o-Xylene	102	40-160	
XYLENE (TOTAL)	103	40-160	
Styrene	90	40-160	
Acetone	93	40-160	
Carbon disulfide	83	40-160	
2-Butanone	88	40-160	
Vinyl acetate	69	40-160	
4-Methyl-2-pentanone	113	40-160	
2-Hexanone	103	40-160	
Acrolein	110	40-160	
Acrylonitrile	106	40-160	

01250615:48 Page 6 of 11

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH SPIKE ANALYSES

Laboratory Job Number: L0600756

Continued

Parameter	% Recovery	QC Criteria
Volatile Organics by GC/MS 6	24 LCS for sample(s) 01 (WG227088-11)
Surrogate(s)		
Pentafluorobenzene	104	80-120
Fluorobenzene	103	80-120
4-Bromofluorobenzene	98	80-120
Pesticides by GC 504 SPIKE for	sample(s) 01 (L06	00756-01, WG227604-3)
1,2-Dibromoethane	100	
1,2-Dibromo-3-chloropropane	107	
Wolatile Organics by GC/MS 624 SPIK		
Methylene chloride	80	10-221
1,1-Dichloroethane	78	59-155
Chloroform	75	51-138
Carbon tetrachloride	72	70-140
1,2-Dichloropropane	81	10-210
Dibromochloromethane	90	53-149
1,1,2-Trichloroethane	94	52-150
2-Chloroethylvinyl ether	76	10-305
Tetrachloroethene	86	64-148
Chlorobenzene	85	37-160
Trichlorofluoromethane	83	17-181
1,2-Dichloroethane	83	49-155
1,1,1-Trichloroethane	79	52-162
Bromodichloromethane	81	35-155
trans-1,3-Dichloropropene	80	17-183
cis-1,3-Dichloropropene	82	10-227
Bromoform	92	45-169
1,1,2,2-Tetrachloroethane	93	46-157
Benzene	85	35-151
Toluene	86	47-150
Ethylbenzene	90	37-162
Chloromethane	71	10-273
Bromomethane	77	10-273
Vinyl chloride		10-242
-	79	
Chloroethane 1,1-Dichloroethene	89	14-230
	77	10-234
trans-1,2-Dichloroethene	79	54-156
cis-1,2-Dichloroethene	82	60-140
Trichloroethene	82	71-157
1,2-Dichlorobenzene	89	18-190
1,3-Dichlorobenzene	87	59-156
1,4-Dichlorobenzene	89	18-190
p/m-Xylene	93	40-160
o-Xylene	92	40-160
XYLENE (TOTAL)	93	40-160
Styrene	81	40-160
Acetone	80	40-160

01250615:48 Page 7 of 11

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH SPIKE ANALYSES

Laboratory Job Number: L0600756

Continued

Parameter	% Recovery	QC Criteria
Volatile Organics by GC/MS 624 SPIKE for	or sample(s) 01	(L0600573-01, WG227088-1)
Carbon disulfide	94	40-160
2-Butanone	82	40-160
Vinyl acetate	116	40-160
4-Methyl-2-pentanone	113	40-160
2-Hexanone	104	40-160
Acrolein	90	40-160
Acrylonitrile	100	40-160
Surrogate(s)		
Pentafluorobenzene	101	80-120
Fluorobenzene	99	80-120
4-Bromofluorobenzene	100	80-120

01250615:48 Page 8 of 11

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH BLANK ANALYSIS

Laboratory Job Number: L0600756

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE II
					PREP ANAL
Blank Analy	raia for a	umplo(a) O	1 /WC2276	:04 1)	
Pesticides by GC 504	SIS LUL Se	mpre(s) 0.	L (WGZZ/C	14 504.1	0124 10:40 0124 12:29 JE
1,2-Dibromoethane	MD		0 020	14 504.1	0124 10:40 0124 12:29 JE
•	ND	ug/l	0.020 0.020		
1,2-Dibromo-3-chloropropane	ND	ug/l	0.020		
Blank Analys		mple(s) 01	(WG22708	38-12)	
Volatile Organics by GC/MS 62	14			5 624	0120 13:54 MM
Methylene chloride	ND	ug/l	5.0		
l,1-Dichloroethane	ND	ug/l	1.5		
Chloroform	ND	ug/l	1.5		
Carbon tetrachloride	ND	ug/l	1.0		
,2-Dichloropropane	ND	ug/l	3.5		
bibromochloromethane	ND	ug/l	1.0		
,1,2-Trichloroethane	ND	ug/l	1.5		
2-Chloroethylvinyl ether	ND	ug/l	10.		
Cetrachloroethene	ND	ug/l	1.5		
hlorobenzene	ND	ug/l	3.5		
richlorofluoromethane	ND	ug/l	5.0		
,2-Dichloroethane	ND	ug/l	1.5		
.,1,1-Trichloroethane	ND	ug/l	2.0		
romodichloromethane	ND	ug/l	1.0		
rans-1,3-Dichloropropene	ND	ug/l	1.5		
sis-1,3-Dichloropropene	ND	ug/l	1.5		
gromoform	ND	ug/l	1.0		
.,1,2,2-Tetrachloroethane	ND	ug/l	1.0		
Benzene	ND	ug/l	1.0		
Coluene	ND	_	1.0		
	ND	ug/l	1.0		
thylbenzene Thloromethane		ug/l			
	ND	ug/l	10.		
Bromomethane	ND	ug/l	5.0		
inyl chloride	ND	ug/l	2.0		
Chloroethane	ND	ug/l	2.0		
,1-Dichloroethene	ND	ug/l	1.0		
crans-1,2-Dichloroethene	ND	ug/l	1.5		
sis-1,2-Dichloroethene	ND	ug/l	1.0		
richloroethene	ND	ug/l	1.0		
,2-Dichlorobenzene	ND	ug/l	5.0		
,3-Dichlorobenzene	ND	ug/l	5.0		
.,4-Dichlorobenzene	ND	ug/l	5.0		
o/m-Xylene	ND	ug/l	2.0		
o-xylene	ND	ug/l	1.0		
Zylene (Total)	ND	ug/l	2.0		
Styrene	ND	ug/l	1.0		
acetone	ND	ug/l	10.		
Carbon disulfide	ND	ug/l	5.0		
2-Butanone	ND	ug/l	10.		
/inyl acetate	ND	ug/l	20.		
l-Methyl-2-pentanone	ND	ug/l	10.		

01250615:48 Page 9 of 11

ALPHA ANALYTICAL LABORATORIES QUALITY ASSURANCE BATCH BLANK ANALYSIS

Laboratory Job Number: L0600756

Continued

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE	ID
					PREP AN	IAL
Blank A	nalysis for sam	mple(s) 01	. (WG2270	88-12)		
Volatile Organics by GC/	MS 624 cont'd			5 624	0120	13:54 MM
2-Hexanone	ND	ug/l	10.			
Acrolein	ND	ug/l	8.0			
Acrylonitrile	ND	ug/l	10.			
Surrogate(s)	Recovery		QC Cr	iteria		
Pentafluorobenzene	102.	8	80-12	0		
Fluorobenzene	104.	8	80-12	0		
4-Bromofluorobenzene	99.0	%	80-12	0		

01250615:48 Page 10 of 11

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

- 5. Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 14. Methods for the Determination of Organic Compounds in Finished Drinking Water and Raw Source Water. EPA/600/4-88/039, Revised July 1991.

GLOSSARY OF TERMS AND SYMBOLS

REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

NI Not Ignitable.

ug/cart Micrograms per Cartridge.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

						FCRM NO: 01-01(rev. 14-May-04)
See reverse side.	2 41 2	200	1706 14:25	The 1.	9/10	
subject to Alpha's Payment Terms.	Japan id to	へがなるよう	or: C) / 30/5		10 m	PROJECT MCP ?
will not start until any ambiguities are	Date/Time	Received By:	Date/Ţime	Relinquished By:	2	IS YOUR
logged in and turnaround time clock		1 to 1	Preservative H			
Please print clearly, legibly and		< C	Container Type \		OLICATIONS AROVE MI IST BE ANSWERED FOR PRESUMPTIVE CERTAINTY	CHESTIONS ABOVE MILIST
					Jump Wischese	OBO. Jum
			?	5	ı	
Sample Specific Comments		7	ix Initials	Collection Sample Date Time Matrix	Sample ID	ALPHA Lab ID
(Please specify below)		(10)		1		
Preservation Lab to do		24/				
Not needed □ Lab to do		ANA Vo	•	CHOIL FILLIES.	Other Project Specific Requirements/Comments/Detection Limits	Other Project Specific Re
/ Filtration		Uys Vo		i / a Y Op	viously analyzed by Alpha	☐ These samples have been previously analyzed by Alpha
SAMPLEHANDLING		(S)		<u>-</u>	Date Due:	Email:
ments?	Have you met minimum field QC requirements?	☐ Yes ☐ No Have you me		d □ RUSH (only confirmed if pre-spproved!)	☐ Standard	Fax:
•	Are MCP Analytical Methods Required?	O No		Turn-AroundTime		Phone: 7
SMUSTBEANSWERED	NTY-THESE QUESTIONS	MCPPRESUMPTIVE CERTAINTY-THESE QUESTIONS MUST BE ANSWERED	M	uote #:	ALPHA Quote #	Normall ND
	6W-1	MY 30CO		mager Nack G	Project Manager:	Address: 101 Accord 8K
	Criteria	State /Fed Program		11-1226	Project #:	Client: C∢C
	verables	ADEX LAGOT DEIVERABLES		Project Location: Belmont, MA		Client Information
Same as Client info PO#:			V.	Project Name: NOOES Permit / TOP	36	Eight Walkup Drive Westborough, MA 01361 TEL: 508-898-9220 FAX: 508-898-9193
Billing Information	Data Deliverables Billing I	Report Information - Data D		Project Information		
ALPHA Job#: (0000 thisp	M ALPHA	Date Rec'd in Lab:	OF	STODY PAGE	CHAIN OF CUSTODY	
/ mm						

ALPHA ANALYTICAL LABORATORIES

Eight Walkup Drive Westborough, Massachusetts 01581-1019 (508) 898-9220 www.alphalab.com

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

CERTIFICATE OF ANALYSIS

Client: Coler & Colantonio Laboratory Job Number: L0600518

Address: 101 Accord Park Drive

Norwell, MA 02061 Date Received: 12-JAN-2006

Attn: Mr. Paul Cinquegrano Date Reported: 19-JAN-2006

Project Number: 11-12 Delivery Method: Alpha

Site: TOPS CLEANERS

ALPHA SAMPLE NUMBER CLIENT IDENTIFICATION SAMPLE LOCATION

L0600518-01 SUMP DISCHARGE BELMONT, MA

I, the undersigned, attest under the pains and penalties of perjury that, based upon my personal inquiry of those responsible for obtaining the information, the material contained in this report is, to the best of my knowledge and belief, accurate and complete. This certificate of analysis is not complete unless this page accompanies any and all pages of this report.

Authorized by: Dong on Greelay

Technical Director

01190616:36 Page 1 of 16

MA:M-MA086 NH:200301-A CT:PH-0574 ME:MA086 RI:65 NY:11148 NJ:MA935 Army:USACE

Laboratory Sample Number: L0600518-01 Date Collected: 12-JAN-2006 14:00

SUMP DISCHARGE Date Received: 12-JAN-2006

Sample Matrix: WATER Date Reported: 19-JAN-2006

Condition of Sample: Satisfactory Field Prep: None

Number & Type of Containers: 10-Amber, 4-Plastic

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	TE.	ID
					PREP	ANAL	
Solids, Total Suspended	8.4	mg/l	5.0	4 160.2		0118 10:00	DT C
Cyanide, Total	0.035	mg/l	0.005	4 335.2	0117 10:00	0117 15:49	9 ED
Chlorine, Total Residual	ND	mg/l	0.05	4 330.1		0112 20:40) HG
ТРН	ND	mg/l	4.00	74 1664A	0118 10:15	0119 14:30) AT
Phenolics, Total	ND	mg/l	0.03	4 420.1		0116 11:00) AT
Chromium, Hexavalent	ND	mg/l	0.02	30 3500CR-D	0112 21:40	0112 21:40) HG
Total Metals				19 200.7			
Antimony, Total Arsenic, Total Cadmium, Total Chromium, Total Copper, Total Iron, Total Lead, Total Mercury, Total Nickel, Total Selenium, Total Silver, Total Zinc, Total	ND ND ND ND 0.43 0.002 ND ND ND	mg/l mg/l mg/l mg/l mg/l mg/l mg/l mg/l	0.005 0.005 0.0002 0.01 0.01 0.05 0.001 0.0002 0.025 0.005 0.0002	3 200.9 19 200.7 4 213.2 19 200.7 19 200.7 19 200.7 3 200.9 4 245.2 19 200.7 19 200.7 4 272.2 19 200.7	0116 18:40 0116 18:40 0116 18:40 0116 18:40 0116 18:40 0116 18:40 0116 18:40 0116 18:40	0118 15:09 0117 13:5' 0118 12:24 0117 13:5' 0117 13:5' 0117 13:5' 0118 19:48 0117 10:11 0117 13:5' 0117 13:5' 0118 22:08 0117 13:5'	7 RW 4 PY 7 RW 7 RW 7 RW 8 PY 2 DM 7 RW 7 RW 8 RC
SVOC's by GC/MS 8270 Acenaphthene Benzidine 1,2,4-Trichlorobenzene Hexachlorobenzene Bis(2-chloroethyl)ether 1-Chloronaphthalene 2-Chloronaphthalene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzidine	ND N	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	4.9 49. 4.9 4.9 4.9 5.9 4.9 4.9 4.9	1 8270C	0113 12:30	0116 20:0	7 RL

Comments: Complete list of References and Glossary of Terms found in Addendum I

Laboratory Sample Number: L0600518-01

SUMP DISCHARGE

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DA PREP	TE ANAL	ID
2770.01 - h 00/Mg 0070								
SVOC's by GC/MS 8270 cont'd	NID	/7	г о	1	8270C	0113 12:30	0116 20:0	17 RL
2,4-Dinitrotoluene	ND	ug/l	5.9					
2,6-Dinitrotoluene	ND	ug/l	4.9					
Azobenzene Fluoranthene	ND	ug/l	4.9					
fluoranthene 4-Chlorophenyl phenyl ether	ND	ug/l	4.9					
4-Bromophenyl phenyl ether	ND	ug/l	4.9 4.9					
Bis(2-chloroisopropyl)ether	ND ND	ug/l	4.9					
Bis(2-chloroethoxy)methane		ug/l	4.9					
Hexachlorobutadiene	ND ND	ug/l	9.8					
Hexachlorocyclopentadiene	ND ND	ug/l						
Hexachlorocyclopentadiene Hexachloroethane		ug/l	9.8					
	ND	ug/l	4.9					
Isophorone Naphthalene	ND ND	ug/l	4.9 4.9					
Naphthaiene Nitrobenzene		ug/l						
	ND	ug/l	4.9					
IDPA/DPA	ND	ug/l	15.					
n-Nitrosodi-n-propylamine	ND	ug/l	4.9					
Bis(2-ethylhexyl)phthalate	ND	ug/l	9.8					
Butyl benzyl phthalate	ND	ug/l	4.9					
Di-n-butylphthalate	ND	ug/l	4.9					
Di-n-octylphthalate	ND	ug/l	4.9					
Diethyl phthalate	ND	ug/l	4.9					
Dimethyl phthalate	ND	ug/l	4.9					
Benzo(a)anthracene	ND	ug/l	4.9					
Benzo(a)pyrene	ND	ug/l	4.9					
Benzo(b)fluoranthene	ND	ug/l	4.9					
Benzo(k)fluoranthene	ND	ug/l	4.9					
Chrysene	ND	ug/l	4.9					
Acenaphthylene	ND	ug/l	4.9					
Anthracene	ND	ug/l	4.9					
Benzo(ghi)perylene	ND	ug/l	4.9					
luorene	ND	ug/l	4.9					
Phenanthrene	ND	ug/l	4.9					
Dibenzo(a,h)anthracene	ND	ug/l	4.9					
Indeno(1,2,3-cd)pyrene	ND	ug/l	6.8					
Pyrene	ND	ug/l	4.9					
Benzo(e)pyrene	ND	ug/l	4.9					
Biphenyl	ND	ug/l	4.9					
Perylene	ND	ug/l	4.9					
Aniline	ND	ug/l	9.8					
l-Chloroaniline	ND	ug/l	4.9					
-Methylnaphthalene	ND	ug/l	4.9					
2-Nitroaniline	ND	ug/l	4.9					
3-Nitroaniline	ND	ug/l	4.9					
l-Nitroaniline	ND	ug/l	6.8					
Dibenzofuran	ND	ug/l	4.9					
a,a-Dimethylphenethylamine	ND	ug/l	49.					
Hexachloropropene	ND	ug/l	9.8					
Nitrosodi-n-butylamine	ND	ug/l	9.8					
2-Methylnaphthalene	ND	ug/l	4.9					

 $\hbox{{\tt Comments:}} \ \hbox{{\tt Complete list of References and Glossary of Terms found in Addendum I} \\$

Laboratory Sample Number: L0600518-01

SUMP DISCHARGE

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DA	ATE ID	
					PREP	ANAL	
VOCL - 1 CC /MC 0070							
SVOC's by GC/MS 8270 cont'd	NID	/7	20	1 8270C	0113 12:30	0116 20:07 F	
1,2,4,5-Tetrachlorobenzene	ND	ug/l	20.				
Pentachlorobenzene	ND	ug/l	20.				
a-Naphthylamine	ND	ug/l	20.				
o-Naphthylamine	ND	ug/l	20.				
Phenacetin	ND	ug/l	9.8				
Dimethoate	ND	ug/l	20.				
-Aminobiphenyl	ND	ug/l	9.8				
Pentachloronitrobenzene	ND	ug/l	9.8				
sodrin	ND	ug/l	9.8				
-Dimethylaminoazobenzene	ND	ug/l	9.8				
Chlorobenzilate	ND	ug/l	20.				
3-Methylcholanthrene	ND	ug/l	20.				
thyl Methanesulfonate	ND	ug/l	15.				
Acetophenone	ND	ug/l	20.				
Jitrosodipiperidine	ND	ug/l	20.				
,12-Dimethylbenz(a)anthracene		ug/l	9.8				
n-Nitrosodimethylamine	ND	ug/l	49.				
2,4,6-Trichlorophenol	ND	ug/l	4.9				
o-Chloro-m-cresol	ND	ug/l	4.9				
2-Chlorophenol	ND	ug/l	5.9				
4,4-Dichlorophenol	ND	ug/l	9.8				
2,4-Dimethylphenol	ND	ug/l	9.8				
2-Nitrophenol	ND	ug/l	20.				
-Nitrophenol	ND	ug/l	9.8				
,4-Dinitrophenol	ND	ug/l	20.				
,6-Dinitro-o-cresol	ND	ug/l	20.				
Pentachlorophenol	ND	ug/l	20.				
Phenol	ND	ug/l	6.8				
2-Methylphenol	ND	ug/l	5.9				
B-Methylphenol/4-Methylphenol	ND	ug/l	5.9				
2,4,5-Trichlorophenol	ND	ug/l	4.9				
2,6-Dichlorophenol	ND	ug/l	9.8				
Benzoic Acid	ND	ug/l	49.				
Benzyl Alcohol	ND	ug/l	9.8				
Carbazole	ND	ug/l	4.9				
yridine	ND	ug/l	49.				
2-Picoline	ND	ug/l	20.				
Pronamide	ND	ug/l	20.				
ethyl methanesulfonate	ND	ug/l	20.				
Surrogate(s)	Recovery		QC Cr	iteria			
?-Fluorophenol	37.0	%	21-12	0			
Phenol-d6	30.0	%	10-12	0			
	64.0	%	23-12				
Nitrobenzene-d5		%	43-12				
	62.0						
Jitrobenzene-d5 2-Fluorobiphenyl 2,4,6-Tribromophenol		%	10-12	0			
	81.0 86.0	90 90	10-12 33-12				

 $\hbox{{\tt Comments:}} \ \hbox{{\tt Complete list of References and Glossary of Terms found in Addendum I} \\$

ALPHA ANALYTICAL LABORATORIES CERTIFICATE OF ANALYSIS

Laboratory Sample Number: L0600518-01

SUMP DISCHARGE

PARAMETER	RESULT	UNITS	RDL I	REF METHOD	DATE ID		
					PREP	ANAL	
PAH by GC/MS SIM 8270M cont'd				1 8270C-M	0113 12:30	0116 13:22 RL	
Acenaphthene	ND	ug/l	0.20				
2-Chloronaphthalene	ND	ug/l	0.20				
Fluoranthene	ND	ug/l	0.20				
Hexachlorobutadiene	ND	ug/l	0.49				
Naphthalene	ND	ug/l	0.20				
Benzo(a)anthracene	ND	ug/l	0.20				
Benzo(a)pyrene	ND	ug/l	0.20				
Benzo(b)fluoranthene	ND	ug/l	0.20				
Benzo(k)fluoranthene	ND	ug/l	0.20				
Chrysene	ND	ug/l	0.20				
Acenaphthylene	ND	ug/l	0.20				
Anthracene	ND	ug/l	0.20				
Benzo(ghi)perylene	ND	ug/l	0.20				
Fluorene	ND	ug/l	0.20				
Phenanthrene	ND	ug/l	0.20				
Dibenzo(a,h)anthracene	ND	ug/l	0.20				
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20				
Pyrene	ND	ug/l	0.20				
- -Methylnaphthalene	ND	ug/l	0.20				
2-Methylnaphthalene	ND	ug/l	0.20				
Pentachlorophenol	ND	ug/l	0.78				
Hexachlorobenzene	ND	ug/l	0.78				
Perylene	ND	ug/l	0.20				
Biphenyl	ND	ug/l	0.20				
2,6-Dimethylnaphthalene	ND	ug/l	0.20				
-Methylphenanthrene	ND	ug/l	0.20				
Benzo(e)Pyrene	ND	ug/l	0.20				
Mexachloroethane	ND	ug/l	0.78				
Gurrogate(s)	Recovery		QC Crite	eria			
2-Fluorophenol	43.0	%	21-120				
Phenol-d6	34.0	%	10-120				
Nitrobenzene-d5	65.0	%	23-120				
2-Fluorobiphenyl	56.0	%	43-120				
2,4,6-Tribromophenol	61.0	%	10-120				
l-Terphenyl-d14	58.0	%	33-120				
Polychlorinated Biphenyls				5 608	0113 10:45	0117 03:04 SS	
aroclor 1221	ND	ug/l	0.258				
aroclor 1232	ND	ug/l	0.258				
Aroclor 1242/1016	ND	ug/l	0.258				
Aroclor 1248	ND	ug/l	0.258				
Aroclor 1254	ND	ug/l	0.258				
Aroclor 1260	ND	ug/l	0.258				
	Dogorrowii		QC Crite	eria			
Surrogate(s)	Kecoverv						
Surrogate(s) 2,4,5,6-Tetrachloro-m-xylene	Recovery 51.0	%	30-150	CIIG			

 $\hbox{{\tt Comments:}} \hbox{{\tt Complete list of References and Glossary of Terms found in Addendum I}\\$

Laboratory Job Number: L0600518

Parameter	Value 1	Value 2	Units	RPD	RPD Limi	ts
Solids, Total	Suspended f	or sample(s) 01 (L060	0451-01,	WG227043-2	:)
Solids, Total Suspended	160	160	mg/l	0	20	
Cyanide,	Total for sa	mple(s) 01	(L0600488-	04, WG22	5776-4)	
Cyanide, Total	0.138	0.137	mg/l	1	30	
Chlorine, Tota					WG226604-3	()
Chlorine, Total Residual	ND	ND	mg/l	NC		
TPH	for sample(s) 01 (L060	0518-01. W	G227211-	4)	
ГРН	ND	ND	mq/1	NC	34	
			_			
Phenolics,	Total for s	ample(s) 01	(L0600518	-01, WG2:	26902-4)	
Phenolics, Total	ND	ND	mg/1	NC		
Chromium, He	xavalent for	sample(s)	01 (L06005	18-01. W	3226611-4)	
Chromium, Hexavalent	ND	ND	mg/1	NC		
			٥.			
Total Me	tals for sam	ple(s) 01 (L0600518-0	1, WG226	377-1)	
Antimony, Total	ND	ND	mg/1	NC		
Arsenic, Total	ND	ND	mg/1	NC		
Cadmium, Total	ND	ND	mg/1	NC		
Chromium, Total	ND	ND	mg/1	NC		
Copper, Total	ND	ND	mg/1	NC		
Iron, Total	0.43	0.43	mg/1	0		
Lead, Total	0.002	0.003	mg/l	11		
Nickel, Total	ND	ND	mg/l	NC		
Selenium, Total	ND	ND	mg/1	NC		
Silver, Total	ND	ND	mq/1	NC		
Zinc, Total	ND	0.056	mg/l	NC		
zine, recar	112	0.030	9/ _	110		
Total Me	tals for sam	ple(s) 01 (L0600137-0	1, WG226	350-3)	
Mercury, Total	ND	ND	mg/l	NC	, , , , , , , , , , , , , , , , , , ,	
Polychlorinate	d Biphenyls	for sample(s) 01 (L06	00518-01	, WG226718-	4)
	ND			NC	30	
Aroclor 1232	ND	ND	ug/l	NC	30	
Aroclor 1242/1016	ND	ND	ug/l	NC	30	
Aroclor 1248	ND	ND	ug/l	NC	30	
Aroclor 1254	ND	ND	ug/l	NC	30	
Aroclor 1260	ND	ND	ug/l	NC	30	
Surrogate(s)	Reco	verv				QC Criteri
2,4,5,6-Tetrachloro-m-xylene	51.0	62.0	%			30-150
Decachlorobiphenyl	68.0	74.0	%			30-150
ACCUCITATION ON THIS ITY	00.0	77.0	·o			20-130

01190616:36 Page 6 of 16

Laboratory Job Number: L0600518

Parameter	% Recovery QC Criteria
Cyanida Total L	CS for sample(s) 01 (WG226776-2)
Cyanide, Total	103 90-110
	ual LCS for sample(s) 01 (WG226604-2)
Chlorine, Total Residual	105
TPH LCS for	sample(s) 01 (WG227211-2)
ТРН	85 64-132
Phenolics, Total I	LCS for sample(s) 01 (WG226902-2)
Phenolics, Total	94
	t LCS for sample(s) 01 (WG226611-2)
Chromium, Hexavalent	99
	S for sample(s) 01 (WG226877-4)
Antimony, Total	99
Arsenic, Total	102
Cadmium, Total	90
Chromium, Total	100
Copper, Total	96
Iron, Total	95
Lead, Total	107
Nickel, Total	98
Selenium, Total	102
Silver, Total	104
Zinc, Total	97
	S for sample(s) 01 (WG226850-1)
Mercury, Total	102
_	0 LCS for sample(s) 01 (WG226714-2)
Acenaphthene	76 46-118
1,2,4-Trichlorobenzene	72 39-98
2-Chloronaphthalene	80 40-140
1,2-Dichlorobenzene	59 40-140
1,4-Dichlorobenzene	56 36-97
2,4-Dinitrotoluene	96 24-96
2,6-Dinitrotoluene	100 40-140
Fluoranthene	90 40-140
4-Chlorophenyl phenyl ether	84 40-140
n-Nitrosodi-n-propylamine	66 41-116
Butyl benzyl phthalate	88 40-140
Anthracene	54 40-140
Pyrene	85 26-127
Hexachloropropene	66 40-140
P-Chloro-M-Cresol	82 23-97
2-Chlorophenol	64 27-123
2-Nitrophenol	74 30-130

01190616:36 Page 7 of 16

Laboratory Job Number: L0600518

Continued

Parameter	% Recovery QC Criteria
SVOC's by GC/MS 8270 I.CS	S for sample(s) 01 (WG226714-2)
4-Nitrophenol	46 10-80
2,4-Dinitrophenol	92 30-130
Pentachlorophenol	80 9-103
Phenol	28 12-110
Surrogate(s)	
2-Fluorophenol	42 21-120
Phenol-d6	37 10-120
Nitrobenzene-d5	68 23-120
2-Fluorobiphenyl	81 43-120
2,4,6-Tribromophenol	97 10-120
4-Terphenyl-d14	99 33-120
PAH by GC/MS SIM 8270M LC	CS for sample(s) 01 (WG226715-2)
Acenaphthene	59 46-118
2-Chloronaphthalene	70
Fluoranthene	84
Anthracene	56
Pyrene	92 26-127
Pentachlorophenol	72 9-103
Surrogate(s)	
2-Fluorophenol	51 21-120
Phenol-d6	41 10-120
Nitrobenzene-d5	71 23-120
2-Fluorobiphenyl	57 43-120
2,4,6-Tribromophenol	61 10-120
4-Terphenyl-d14	59 33-120
Polychlorinated Biphenyls I	LCS for sample(s) 01 (WG226718-2)
Aroclor 1242/1016	76 40-140
Aroclor 1260	76 40-140
Surrogate(s)	
2,4,5,6-Tetrachloro-m-xylene	70 30-150
Decachlorobiphenyl	54 30-150
	ple(s) 01 (L0600455-02, WG226776-3)
Cyanide, Total	4 80-120
) 01 (L0600575-01, WG227211-3)
ТРН	84 64-132
Phenolics, Total SPIKE for same Phenolics, Total	mple(s) 01 (L0600384-02, WG226902-3)

01190616:36 Page 8 of 16

Laboratory Job Number: L0600518

Parameter %	Recovery QC Criteria
) 01 /7 0600F10 01 H0006F11 0)
Chromium, Hexavalent SPIKE for sample(s	
Chromium, Hexavalent	95
Total Metals SPIKE for sample(s) 01	(T.0600518-01 WG226877-2)
Antimony, Total	103
Arsenic, Total	109
Cadmium, Total	100
Chromium, Total	100
Copper, Total	104
Iron, Total	97
Lead, Total	116
Nickel, Total	101
Selenium, Total	106
Silver, Total	110
Zinc, Total	114
Total Metals SPIKE for sample(s) 01	(IO600127_01 WC226050_2)
Mercury, Total	117
Mercury, Total	117
Polychlorinated Biphenyls SPIKE for sampl	e(s) 01 (L0600518-01, WG226718-3)
Aroclor 1242/1016	63 40-140
Aroclor 1260	76 40-140
Surrogate(s)	52 20 150
2,4,5,6-Tetrachloro-m-xylene	53 30-150
Decachlorobiphenyl	74 30-150

Laboratory Job Number: L0600518

Parameter	MS %	MSD %	RPD	RPD Limit	MS/MSD Limit
SVOC's by GC/MS 8270	for sample(s) ()1 (L060051	L8-01, WG22	26714-4)	
Acenaphthene	71	71	0	30	46-118
1,2,4-Trichlorobenzene	66	66	0	30	39-98
2-Chloronaphthalene	75	75	0	30	40-140
1,2-Dichlorobenzene	56	61	9	30	40-140
1,4-Dichlorobenzene	52	56	7	30	36-97
2,4-Dinitrotoluene	94	94	0	30	24-96
2,6-Dinitrotoluene	99	94	5	30	40-140
Fluoranthene	94	89	5	30	40-140
4-Chlorophenyl phenyl ether	80	80	0	30	40-140
n-Nitrosodi-n-propylamine	61	61	0	30	41-116
Butyl benzyl phthalate	94	85	10	30	40-140
Anthracene	56	56	0	30	40-140
Pyrene	85	85	0	30	26-127
Hexachloropropene	66	66	0	30	40-140
P-Chloro-M-Cresol	78	80	3	30	23-97
2-Chlorophenol	63	66	5	30	27-123
2-Nitrophenol	73	75	3	30	30-130
4-Nitrophenol	71	71	0	30	10-80
2,4-Dinitrophenol	96	100	4	30	30-130
Pentachlorophenol	85	82	4	30	9-103
Phenol	40	42	5	30	12-110
Surrogate(s)					
2-Fluorophenol	49	56	13		21-120
Phenol-d6	51	57	11		10-120
Nitrobenzene-d5	62	67	8		23-120
2-Fluorobiphenyl	73	74	1		43-120
2,4,6-Tribromophenol	94	93	1		10-120
4-Terphenyl-d14	96	94	2		33-120
PAH by GC/MS SIM 8270M	for sample(s)	01 (L06005	518-01, WG2	226715-4)	
Acenaphthene	52	56	7	40	46-118
2-Chloronaphthalene	61	61	0	40	
Fluoranthene	89	89	0	40	
Anthracene	52	47	10	40	
Pyrene	89	85	5	40	26-127
Pentachlorophenol	80	80	0	40	9-103
Surrogate(s)					
2-Fluorophenol	64	71	10		21-120
Phenol-d6	61	68	11		10-120
Nitrobenzene-d5	77	83	8		23-120
2-Fluorobiphenyl	62	63	2		43-120
2,4,6-Tribromophenol	68	70	3		10-120
4-Terphenyl-d14	68	71	4		33-120

Laboratory Job Number: L0600518

PARAMETER		RESULT	T UNITS		RDL	REF	METHOD	DA PREP	TE ANAL	II
	Blank	Analysis for	<pre>sample(s)</pre>	01	(WG2270	43-1)				
Solids, Total Sus	spended	ND	mg/1		5.0	4	160.2		0118 10:0	TO 0
	Blank	Analysis for		01	(WG2267	76-1)				
Cyanide, Total		ND	mg/1		0.005	4	335.2	0117 10:00	0117 15:4	1 ED
	Blank	Analysis for	sample(s)	01	(WG2266	04-1				
Chlorine, Total R			mg/l		0.05		330.1		0112 20:4	0 HG
			•							
	Dlaml-	Analugia fa	gampla/a/	0.1	/ WC 2 2 7 2	11 1 1				
TPH	ьтапк	Analysis for ND	mq/l	UΙ	4.00			0110 10.15	0110 14.7	0 7.77
TEU		ИП	1119 / I		4.00	74	1664A	0118 10:15	O119 14:3	υ AΊ
	Blank	Analysis for	sample(s)	01	(WG2269	02-1)				
Phenolics, Total		ND	mg/l		0.03		420.1		0116 11:0	TA 0
	Blank	Analysis for	sample(s)	0.1	(WG2266	:11_1 °				
Chromium, Hexaval		ND	mg/l	71	0.02		3500CR-D	0112 21:40	0112 21:4	0 нс
			, c					10		
	Blank	Analysis for	<pre>sample(s)</pre>	01	(WG2268	377-3)				
Total Metals						19	200.7			
Antimony, Total		ND	mg/l		0.005	3	200.9	0116 18:40	0118 14:5	2 PV
Arsenic, Total		ND	mg/1		0.005		200.7	0116 18:40		
Cadmium, Total		ND	mg/1		0.0002		213.2	0116 18:40		
Chromium, Total		ND	mg/l		0.01		200.7	0116 18:40		
Copper, Total		ND	mg/l		0.01	19	200.7	0116 18:40	0117 13:5	1 RW
Iron, Total		ND	mg/l		0.05	19	200.7	0116 18:40	0117 13:5	1 RW
Lead, Total		ND	mg/1		0.001	3	200.9	0116 18:40	0118 19:3	4 PY
Nickel, Total		ND	mg/l		0.025		200.7	0116 18:40	0117 13:5	1 RW
Selenium, Total		ND	mg/l		0.005		200.7	0116 18:40		
Silver, Total		ND	mg/l		0.0002		272.2	0116 18:40		
Zinc, Total		ND	mg/l		0.050	19	200.7	0116 18:40	0117 13:5	1 RW
	Blank	Analysis for	sample(s)	01	(WG2268	50-4				
Total Metals		• •	,			. ,				
Mercury, Total		ND	mg/l		0.0002	4	245.2	0116 16:05	0117 09:4	3 DM
	Dlaml-	Analugia fee	gampla/a/	0.1	/ WC 2 2 6 7	11 1 1 1				
SVOC's by GC/MS 8		Analysis for	sample(S)	UΙ	(WG226 /		8270C	0113 12:30	0116 18:2	7 PT
Acenaphthene		ND	ug/l		5.0	1	0210C	0113 12.30	0110 10·Z	, KL
Benzidine		ND	ug/l		50.					
		-12	~_/ <u>-</u>		•					

01190616:36 Page 11 of 16

Laboratory Job Number: L0600518

PARAMETER	RESULT	UNITS	RDL	REF METHOD	DATE ID PREP ANAL
Blank Analy	sis for sa	mple(s) 0	1 (WG226	714-1)	
SVOC's by GC/MS 8270 cont'd			_ (1 8270C	0113 12:30 0116 18:27 RL
1,2,4-Trichlorobenzene	ND	ug/l	5.0		
Hexachlorobenzene	ND	ug/l	5.0		
Bis(2-chloroethyl)ether	ND	ug/l	5.0		
1-Chloronaphthalene	ND	ug/l	5.0		
2-Chloronaphthalene	ND	ug/l	6.0		
1,2-Dichlorobenzene	ND	ug/l	5.0		
1,3-Dichlorobenzene	ND	ug/l	5.0		
1,4-Dichlorobenzene	ND	ug/l	5.0		
3,3'-Dichlorobenzidine	ND	ug/l	50.		
2,4-Dinitrotoluene	ND	ug/l	6.0		
2,6-Dinitrotoluene	ND	ug/l	5.0		
Azobenzene	ND	ug/l	5.0		
Fluoranthene	ND	ug/l	5.0		
4-Chlorophenyl phenyl ether	ND	ug/l	5.0		
4-Bromophenyl phenyl ether	ND	ug/l	5.0		
Bis(2-chloroisopropyl)ether	ND	ug/l	5.0		
Bis(2-chloroethoxy)methane	ND	ug/l	5.0		
Hexachlorobutadiene	ND	ug/l	10.		
Hexachlorocyclopentadiene	ND	ug/l	10.		
Hexachloroethane	ND	ug/l	5.0		
Isophorone	ND	ug/l	5.0		
Naphthalene	ND	ug/l	5.0		
Nitrobenzene	ND	ug/l	5.0		
NDPA/DPA	ND	ug/l	15.		
n-Nitrosodi-n-propylamine	ND	ug/l	5.0		
Bis(2-ethylhexyl)phthalate	ND	ug/l	10.		
Butyl benzyl phthalate	ND	ug/l	5.0		
Di-n-butylphthalate	ND	ug/l	5.0		
Di-n-octylphthalate	ND	ug/l	5.0		
Diethyl phthalate	ND	ug/l	5.0		
Dimethyl phthalate	ND	ug/l	5.0		
Benzo(a)anthracene	ND	ug/l	5.0		
Benzo(a)pyrene	ND	ug/l	5.0		
Benzo(b)fluoranthene	ND	ug/l	5.0		
Benzo(k)fluoranthene	ND	ug/l	5.0		
Chrysene	ND	ug/l	5.0		
Acenaphthylene	ND	ug/l	5.0		
Anthracene	ND	ug/l	5.0		
Benzo(ghi)perylene	ND	ug/l	5.0		
Fluorene	ND	ug/l	5.0		
Phenanthrene	ND	ug/l	5.0		
Dibenzo(a,h)anthracene	ND	ug/l	5.0		
Indeno(1,2,3-cd)pyrene	ND	ug/l	7.0		
Pyrene	ND	ug/l	5.0		
Benzo(e)pyrene	ND	ug/l	5.0		
Biphenyl	ND	ug/l	5.0		

Laboratory Job Number: L0600518

PARAMETER	RESULT	UNITS	RDL	REF	METHOD	DAT PREP	'E ANAL	ID
	·		1 /130006	D14 1	N			
Blank Analys SVOC's by GC/MS 8270 cont'd	is for sa	mpre(s) U.	I (WG226) 8270C	0113 12:30 (116 10.25	7 DT
Perylene	ND	ug/l	5.0	_	02700	0113 12.30 (0110 10.2	, 171
Aniline	ND	ug/l	10.					
4-Chloroaniline	ND	ug/l	5.0					
1-Methylnaphthalene	ND	ug/l	5.0					
2-Nitroaniline	ND	ug/l	5.0					
3-Nitroaniline	ND	ug/l	5.0					
4-Nitroaniline	ND	ug/l	7.0					
Dibenzofuran	ND	ug/l	5.0					
a,a-Dimethylphenethylamine	ND	ug/l	50.					
Hexachloropropene	ND	ug/l	10.					
Nitrosodi-n-butylamine	ND	ug/l	10.					
2-Methylnaphthalene	ND	ug/l	5.0					
1,2,4,5-Tetrachlorobenzene	ND	ug/l	20.					
Pentachlorobenzene	ND	ug/l	20.					
a-Naphthylamine	ND	ug/l	20.					
b-Naphthylamine	ND	ug/l	20.					
Phenacetin	ND	ug/l	10.					
Dimethoate	ND	ug/l	20.					
4-Aminobiphenyl	ND	ug/l	10.					
Pentachloronitrobenzene	ND	ug/l	10.					
Isodrin	ND	ug/l	10.					
p-Dimethylaminoazobenzene	ND	ug/l	10.					
Chlorobenzilate	ND	ug/l	20.					
3-Methylcholanthrene	ND	ug/l	20.					
Ethyl Methanesulfonate	ND	ug/l	15.					
Acetophenone	ND	ug/l	20.					
Nitrosodipiperidine	ND	ug/l	20.					
7,12-Dimethylbenz(a)anthracene		ug/l	10.					
n-Nitrosodimethylamine	ND	ug/l	50.					
2,4,6-Trichlorophenol	ND	ug/l	5.0					
p-Chloro-m-cresol	ND	ug/l	5.0					
2-Chlorophenol	ND	ug/l	6.0					
2,4-Dichlorophenol	ND	ug/l	10.					
2,4-Dimethylphenol	ND	ug/l	10.					
2-Nitrophenol	ND	ug/l	20.					
4-Nitrophenol	ND	ug/l	10.					
2,4-Dinitrophenol	ND	ug/l	20.					
4,6-Dinitro-o-cresol	ND	ug/l	20.					
Pentachlorophenol	ND	ug/l	20.					
Phenol	ND	ug/l	7.0					
2-Methylphenol	ND	ug/l	6.0					
3-Methylphenol/4-Methylphenol	ND	ug/l	6.0					
2,4,5-Trichlorophenol	ND	ug/l	5.0					
2,6-Dichlorophenol	ND	ug/l	10.					
Benzoic Acid	ND	ug/l	50.					
Benzyl Alcohol	ND	ug/l	10.					

Laboratory Job Number: L0600518

PARAMETER	RESULT	UNITS	RDL	REF METHO	DD DA' PREP	TE ANAL	II
	lysis for sa	mple(s) 0	1 (WG2267	14-1)			
SVOC's by GC/MS 8270 contid	l			1 8270C	0113 12:30	0116 18:27	7 RI
Carbazole	ND	ug/l	5.0				
Pyridine	ND	ug/l	50.				
2-Picoline	ND	ug/l	20.				
Pronamide	ND	ug/l	20.				
Methyl methanesulfonate	ND	ug/l	20.				
Surrogate(s)	Recovery		QC Cri	teria			
2-Fluorophenol	49.0	%	21-120				
Phenol-d6	40.0	%	10-120				
Nitrobenzene-d5	76.0	%	23-120				
2-Fluorobiphenyl	73.0	%	43-120				
2,4,6-Tribromophenol	88.0	%	10-120				
4-Terphenyl-d14	90.0	8	33-120				
Blank Ana	alysis for sa	imple(s) 0	1 (WG2267	15-1)			
PAH by GC/MS SIM 8270M				1 8270C-1	M 0113 12:30	0116 12:37	7 RI
Acenaphthene	ND	ug/l	0.20				
2-Chloronaphthalene	ND	ug/l	0.20				
Fluoranthene	ND	ug/l	0.20				
Hexachlorobutadiene	ND	ug/l	0.50				
Naphthalene	ND	ug/l	0.20				
Benzo(a)anthracene	ND	ug/l	0.20				
Benzo(a)pyrene	ND	ug/l	0.20				
Benzo(b)fluoranthene	ND	ug/l	0.20				
Benzo(k)fluoranthene	ND	ug/l	0.20				
Chrysene	ND	ug/l	0.20				
Acenaphthylene	ND	ug/l	0.20				
Anthracene	ND	ug/l	0.20				
Benzo(ghi)perylene	ND	ug/l	0.20				
Fluorene	ND	ug/l	0.20				
Phenanthrene	ND	ug/l	0.20				
Dibenzo(a,h)anthracene	ND	ug/l	0.20				
Indeno(1,2,3-cd)Pyrene	ND	ug/l	0.20				
Pyrene	ND	ug/l	0.20				
1-Methylnaphthalene	ND	ug/l	0.20				
2-Methylnaphthalene	ND	ug/l	0.20				
Pentachlorophenol	ND	ug/l	0.80				
Hexachlorobenzene	ND	ug/l	0.80				
Perylene	ND	ug/l	0.20				
Biphenyl	ND	ug/l	0.20				
2,6-Dimethylnaphthalene	ND	ug/l	0.20				
1-Methylphenanthrene	ND	ug/l	0.20				
	ND	ug/l	0.20				
Benzo(e)Pyrene							

Laboratory Job Number: L0600518

PARAMETER	RESULT	UNITS	RDL REF METHOD	DATE ID PREP ANAL
Rlank Analy	rsis for sa	mple(g) N	1 (WG226715-1)	
PAH by GC/MS SIM 8270M cont'd		mpre(b) o	1 8270C-M	0113 12:30 0116 12:37 RL
Surrogate(s)	Recovery		QC Criteria	
2-Fluorophenol	57.0	%	21-120	
Phenol-d6	46.0	%	10-120	
Nitrobenzene-d5	82.0	8	23-120	
2-Fluorobiphenyl	65.0	%	43-120	
2,4,6-Tribromophenol	69.0	%	10-120	
4-Terphenyl-d14	74.0	%	33-120	
Blank Analy	sis for sa	mple(s) 0	1 (WG226718-1)	
Polychlorinated Biphenyls			5 608	0113 10:45 0117 01:10 SS
Aroclor 1221	ND	ug/l	0.250	
Aroclor 1232	ND	ug/l	0.250	
Aroclor 1242/1016	ND	ug/l	0.250	
Aroclor 1248	ND	ug/l	0.250	
Aroclor 1254	ND	ug/l	0.250	
Aroclor 1260	ND	ug/l	0.250	
Surrogate(s)	Recovery		QC Criteria	
2,4,5,6-Tetrachloro-m-xylene	60.0	%	30-150	
Decachlorobiphenyl	35.0	%	30-150	

ALPHA ANALYTICAL LABORATORIES ADDENDUM I

REFERENCES

- 1. Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846. Third Edition. Updates I IIIA, 1997.
- 3. Methods for the Determination of Metals in Environmental Samples, Supplement I. EPA/600/R-94/111. May 1994.
- Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020. Revised March 1983.
- 5. Methods for the Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A, Part 136, 40 CFR (Code of Federal Regulations).
- 19. Inductively Coupled Plasma Atomic Emission Spectrometric Method for Trace Element Analysis of Water and Wastes. Appendix C, Part 136, 40 CFR (Code of Federal Regulations). July 1, 1999 edition.
- 30. Standard Methods for the Examination of Water and Wastewater. APHA-AWWA-WPCF. 18th Edition. 1992.
- 74. Method 1664, Revision A: N-Hexane Extractable Material (HEM; Oil & Grease) and Silica Gel Treated N-Hexane Extractable Material (SGT-HEM; Non-polar Material) by Extraction and Gravimetry, EPA-821-R-98-002, February 1999.

GLOSSARY OF TERMS AND SYMBOLS

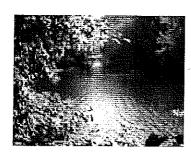
REF Reference number in which test method may be found.

METHOD Method number by which analysis was performed.

ID Initials of the analyst.

ND Not detected in comparison to the reported detection limit.

NI Not Ignitable.


ug/cart Micrograms per Cartridge.

LIMITATION OF LIABILITIES

Alpha Analytical, Inc. performs services with reasonable care and diligence normal to the analytical testing laboratory industry. In the event of an error, the sole and exclusive responsibility of Alpha Analytical, Inc., shall be to re-perform the work at it's own expense. In no event shall Alpha Analytical, Inc. be held liable for any incidental consequential or special damages, including but not limited to, damages in any way connected with the use of, interpretation of, information or analysis provided by Alpha Analytical, Inc.

We strongly urge our clients to comply with EPA protocol regarding sample volume, preservation, cooling, containers, sampling procedures, holding times and splitting of samples in the field.

Fax: Client: Client Information TEL: 508-898-9220 FAX: 508-898-9193 Eight Walkup Drive Westborough, MA 01581 ☐ These samples have been previously analyzed by Alpha Phone: Address: Other Project Specific Requirements/Comments/Detection Limits: ALPHA Lab ID (Lab Use Only) 1.8150 FORM NO: 01-01 (rev. 14-May-04) QUESTIONS ABOVE MUST BE ANSWERED FOR PRESUMPTIVE CERTAINTY 181 Jornach MA PROJECT MCP? IS YOUR C&C 101 Accord PK Dr 792-2234 ø 530 CHAIN OF CUSTODY Urschurge Sample ID Project Name: Tops Project Location: Belmont WA Project Manager: Project Information Standard ALPHA Quote #: Project #: Date Due: Turn-Around Time Relinquished By: 1/1206 14:x Date 21-11 Collection Marc RUSH (only confirmed if pre-approved!) Time acuners PAGE P Time: 500 Sample Matrix 11200 12:01 Container Type 읶 Date/Time Preservative P Sampler's م initials ANALYSIS Regulatory Requirements/Report Limits Date Rec'd in Lab: State /Fed Program UPDES □ Yes MCPPRESUMPTIVE CERTAINTY-THESEQUESTIONS MUST BE ANSWERED Report Information - Data Deliverables ☐ Yes □ FAX Ž Š 3 □ N N N 20000 MIP INPOSS ç 80320 Hole ☐ Add'l Deliverables Have you net minimum field QC requirements? Are Drinking Water Samples Submitted? Are MCP Analytical Methods Required? **PEMAIL** NO BRES たのて WATER Criteria NP 025 10 Date/Time 13 Same as Client info ALPHA Job#: LOGOO STF Billing Information Troject on wools 30 Y O THE POCS James water usels for 6244 resolved. All samples submitted are subject to Alpha's Payment Terms. See reverse side. completely. Samples can not be will not start until any ambiguities are Charlow at logged in and turnaround time clock Please print clearly, legibly and Sample Specific Comments □ Not needed □ Done **Filtration SAMPLE HANDLING** (Please specify below) ☐ Lab to do Preservation ☐ Lab to do PO #: forthwom na Or remote a S E L 1 1 0 8

Friends of Alewife Reservation (FAR)

FAR home page

Search

Events News Image Collections
Archive & Links (text, maps, photos)

What we do (Volunteer!)
About FAR
Contact FAR

Summary of Health Hazards in Cambridge and Belmont Winter 2003, Little River - Alewife Brook subwatershed Mark Kirk of FAR with information from the water quality testing team of the Mystic River Watershed Association.

Mystic River Monitoring Network - Libby Larson: Coordinator

Alewife Brook

Testing Sites:

For baseline monitoring, samples are collected the second Wednesday of each month from the Somerville side of the Brook, just downstream of the Broadway Bridge. This site is referred to as **ALB006**.

For the samples collected from pipes, the following abbreviations were used:

3.400 (D. 4.4	O TOWN TO STEE TO THE TOWN TOWN TO THE TOW
MBTA4	The state of the s
CAMD3	I U J U J I Marked CDOOO;
ACORN	The state of the s
HWY00	=
CAMD3	
CAMD3	Fawcett St rectangular drain to West side of open segment
CAMD3	4 Little Pond Conduit to Wellington Brook North of R/R tracks
CAMD3	
BEL08S	Center (round) outfall to Wellington Brook at Brighton/Blanchard
BEL08N	Northernmost (outside round) Wellington Brook @ Brighton/Blanchard
BEL01x	Brighton St drain to Little Pond between Pond St and Sandrick Rd.
WEB013	Wellington Brook @ Common Street
WEB007	Wellington:Brooksonffäll fost läypin kom!
-WEBOOT	Winn's Brook outfall to Little Pond
SOMD1:	1 CSO SOM004 by pump station
MDC86	36" MDC #8(6) by Fairfax Street
SOMD10	0 12"clay aka MDC #6(6)
SOMX0	Clay pipe in square bulkhead
ARL027	Pipe with flap on end
SOMD09	CSO SOM002A/SOM003
SOMD08	8 CSO SOM002
ARL026	In front of gate in fence
MDCX0	
SOMD07	7 Storm drain just downstream of Broadway
ARL017	Broadway main drain
ARLX02	
SOMD05	2nd pipe downstream of Henderson
ARL014	First drain upstream of Henderson

ARL013	2nd drain upstream of Henderson
ARL011	Mass Avenue Drain in abutment
ALB013	Alewife Brook centerline downstream of Rt 2
ADL001	ADL office park drain
ADL001	ADL office park drain DUP
MARSH1	Outflow from 'Martignetti Marsh'
WEBODI	Wellington Brook mouth @ Perch Pond
BEL013	Spy Pond Conduit
BEL011	Drain to NW corner of Little Pond

For centerline sampling, the last 3 digits of the site ID indicate the location of the site in river miles from the mouth, e.g. ALB006 is 0.6 miles from the mouth at the Mystic River.

Results (Summary):

All of the waters tested have been classified as Class B waters meaning that the water should meet fishable and swimmable standards. The Massachuseus Surface Water Quality Standards (MASWQS, 314 CMR 4.00) for primary and secondary contact are 200 cfu/100ml and 1,000 cfu/100ml, respectively, of fecal coliform from a single sample.

For the June 2002 sampling event, again four out of twenty-seven samples met the MASWQS for swimming, with the same three Little River samples coming up "clean." None of the samples violated the criteria for boating. The geometric mean for this event was 296 cfu/100 ml. Rainfall prior to the event was 0 inches, except 0.07 inches was recorded two days before the event.

Pipes monitoring – Most of the pipes sampled in April 2002 were clean, however there are several exceptions to note: MBTA48, HWY001, WEB013, MDCX01, SOMD07, ARL014, ARL013, MARSH1, BEL013, BEL011 (with exceptionally high results above 100,000 cfu/100 ml), and WIB001. There was only trace rainfall in the three days prior to this event. Repeated sampling of select pipes in June 2002 showed reduced levels at both ARL014 and ARL013, and increased levels at BEL013, BEL011, and WIB001. BEL011 had results greater than 200,000 cfu/100 ml.

Conclusion:

It is quite striking that during dry weather, the centerline results for Alewife Brook have consistently across time and space come up relatively "clean," despite some very large inputs from area pipes. The high inputs into Little Pond clearly settle out so that the Little River water is very clean. Following the Brook downstream, however, inputs from Wellington Brook again raise the bacteria levels, which then generally decline as the Brook flows to the Mystic, although there is some elevation in the ALB009 - ALB015 range.

The variation seen in the "Alewife Brook Centerline Fecal Coliform Results" could be due to the poor precision of bacteria analysis methods alone (i.e. culturing bacteria from the same sample bottle often yields results that differ widely but are the same order of magnitude). The results are all in the same order of magnitude and the graph could be considered essentially flat line. Eliminating these large point sources and improving the flow conditions of the Alewife could potentially lead to the development of a dry-weather TMDL for Alewife well within the limits of the MASWQS for Class B waters.

Baseline monitoring at ALB006 revealed that the Brook violates both the primary and secondary standards for Class B waters, especially during rain events. In October 2002 we completed some wet-weather sampling of select pipes along the Brook, although we have not yet received the results from the Lab. We hope to do more in the future as weather and resources permit, in order to evaluate the impact of wet weather pipes and non-point sources on the system.

Wellington Brook

Testing Sites:

WEB022	Belmont source for Junction Brook at 170' elevation off Pleasant Street @
	McLean.
WEB020	Belmont's Junction Brook by Pleasant Street at 80' elevation. Just before it goes underground to join Wellington Brook.
WEB013	Belmont where Wellington Brook emerges from under Common Street to run behind the Library.
WEB010	Belmont behind East end of Library where brook goes back underground next to the pool and low area used for skating.
WEB007	Belment by Concord Avenue where Wellington Brook flows into the SW corner of Saypir pond.
WEB005	Belinoman the NE corner of Claypic Pond by onder
WEB003	Belmont where Wellington emerges from beneath Brighton Street before it mixes with Cambridge drain to enter Blair Pond.
WEB002	Cambridge Blair Pond outlet North just before R/R. This shows both the addition of the Cambridge drain at Blanchard Street, and some settling of contaminants in the pond.
WEB001	Cambridge before Perch Pond (end of Wellington Brook) but after the last stormdrain mixes in from Normandy Terrace and Blacks Nook.

Results (summary):

All of the waters tested-have been classified as Class B waters, meaning that the water should meet fishable and swimmable standards. For fecal coliform, all but two of the results violated the Massachusetts Surface Water Quality Standards (314 CMR 4.00) for primary and secondary contact. The two sites which met primary contact standards were Belmont in the NE corner of Claypit Pond (WEB005), and Junction Brook at Pleasant Street (WEB020). The highest result for fecal coliform (65,000 cfu/100 mL) was at WEB013, Wellington Brook behind the library.

Two sampling locations had dissolved oxygen (DO) results below one of the criteria established by the state. Wellington Brook in Cambridge before Perch Pond (WEB001), and Wellington Brook in Cambridge at Blair Pond (WEB002) both had percent saturation readings below the MASQWS standard of 60%.

Conclusion:

The high levels of fecal coliform and E. coli bacteria are of concern for public health, especially because many of the sampling locations have easy public access. The two locations nearest the Library have the easiest and most frequent public use. However, during these winter months the potential for public contact is reduced. Due to the very high results at several locations (particularly the location behind the Library), we hypothesize that sewage is contaminating the Brook at points currently culverted. Additional bracket sampling would be required via manholes to determine precise locations. The Mystic River Watershed Association would be happy to assist the town of Belmont in any further sampling and investigation.

Winn's Brook

Testing Sites:

WIB001	Winn's Brook outfall to Little Pond
WIB003	Grate over Brook East side of Waterhouse Road
WIB005	Grate over Brook North side of Sherman Street
WIBUTA	Grate over Tributary 'A' @ 32 Frost Street
WIB009	Brook beside 73 Claffin Street upstream of grate
WIB012	Brook East side of Clifton Street by Hickory Lane
WIB013	Brook at Howell's Road footpath bridge
WIBUTB	Tributary 'B' South side of Pleasant West of Clifton St
ATB004	Atkins Brook by wetland pond in Audubon Sanctuary

Results

For the baseline monitoring, the geometric mean for WIB001 is 844 cfu/100 ml for the period 7/2000 – 5/2002. For these samples, 75% violated the standard for primary contact, and 46% violated the standard for secondary contact.

For the March 26th monitoring, 4 samples violated the primary contact standard, and only 2 violated the secondary contact standard. The two violations occurred at WIB001 and WIB005 (Grate over Brook North side of Sherman Street).

One sampling location had dissolved oxygen (DO) results below one of the criteria established by the state. Atkin's Brook had a percent saturation of 58.3%, just below the state standard of 60%. This is probably due to the effect of the nearby wetland on the Brook.

While there are no state standards for salinity, salinity can be an indicator of probable contamination. For the March 26th sampling, salinity ranged from 0.2 ppt at Tributary A (WIBUTA) to 0.6 ppt at Tributary B (WIBUTB) and WIB003.

Conclusion

The high levels of fecal coliform and E. coli bacteria are of concern for public health, especially because Winn's Brook discharges into Little Pond, which is used recreationally. Atkins Brook and upstream sections of Winn's Brook are very clean. Due to the higher concentrations of fecal coliform downstream at WIB001 and WIB005, we hypothesize that sewage is contaminating the Brook at points currently culverted. Additional bracket sampling would be required via manholes to determine precise locations. The Mystic River Watershed Association would be happy to assist the town of Belmont in any further sampling and investigation.

BEST MANAGEMENT PRACTICES PLAN

COMMON STREET TRUST BUILDING 102-104 TRAPELO BELMONT, MASSACHUSETTS

RTN 3-23300

January 13, 2009

Prepared for:

Mr. Chris Starr Jenkins/Starr LLC 6 Littlefield Road Acton, Massachusetts 01720

Prepared by:

Jake Hurley Project Scientist Reviewed by:

Glen A. Cote Project Manager

Coler & Colantonio, Inc. 101 Accord Park Drive Norwell, Massachusetts 02061-1685 (781)-982-5400

TABLE OF CONTENTS

Best Management Practices Plan

Common Street Trust Building 102-104 Trapelo Road Belmont, Massachusetts RTN 3-23300

1.0	INTRODU	CTION	. 1
2.0	SYSTEM I	DESCRIPTION	. 1
3.0	POLLUTIO	ON CONTROLS	. 1
4.0	MONITOR	RING ACTIVITIES	. 2
5.0	PREVENT	TATIVE MAINTENANCE PLAN	. 2
6.0	EMPLOYI	EE TRAINING	. 3
FIGU	IRES		
Fi	gure 1	Site Plan	
Fi	gure 2	Pump & Treat Diagram	
APPE	ENDIX		
A_{j}	ppendix A	Health and Safety Plan	

1.0 INTRODUCTION

On behalf of Jenkins/Starr LLC, Coler & Colantonio Inc. has prepared this *Best Management Practices Plan (BMPP)* for the discharge operations covered under the Remedial General Permit (RGP) submitted to the United States Environmental Protection Agency (EPA) in December, 2008 for groundwater discharge associated with the remediation of contaminated groundwater occurring at the Common Street Trust (CST) Building located at 102-104 Trapelo Road in Belmont, Massachusetts (the "Site"). The discharge is expected to occur until December 2010. A copy of the BMPP will be maintained on-Site and will be made available for inspection to federal and state personnel.

2.0 SYSTEM DESCRIPTION

The basement of the CST building has been utilizing a submersible (sump) pump system to control surface water and groundwater that periodically floods the basement. In 2006, it was determined that the groundwater infiltrating the basement had detectable concentrations of contamination. Therefore, Coler & Colantonio, Inc. determined that by modifying the sump system to a Pump & Treat (P&T) system that the water in the basement can continued to be controlled via the existing sumps and the contaminates can be treated prior to discharge to the storm drain.

The P&T system consists of three sump pumps manifolded together prior to treatment via granular activated carbon (GAC) with activated carbon/zeolite impregnated with potassium iodide (a.k.a, "coconut carbon") that discharges to the storm drain that is located outside of the southwest corner of the building. The P&T system operates via three float controlled sump pumps that are active based on water/groundwater infiltration. The groundwater collected from the three sumps is pumped to the active system, consisting of a 55-gallon receiving drum with a sump for controlling flow rate, which is then transferred to another 55-gallon drum with coconut carbon. The groundwater passes through the coconut carbon drum, which decreases the concentrations of chlorinated solvents, MtBE, cyanide, and lead before being discharged into the catch basin behind the CST Building. The system's discharge is not anticipated to be greater than 7 gallons per minute (gpm) and the P&T system designed flow rate can process up to 10 gpm. An inline water flow meter tracks the volume of groundwater processed.

3.0 POLLUTION CONTROLS

Several controls have been included in the remedial design to minimize the possibility of an accidental discharge or spill and to minimize the impacts should an accidental discharge or spill occur. Drums have been elevated above the basement floor to eliminate contact with the water on the basement floor, thus preventing corrosion caused by flooding when the water table rises. The P&T system will be monitored once a month by a licensed wastewater operator to insure that the P&T System is operating properly and compliant with the

applicable regulations. Monthly samples will be collected at both the influent and effluent stages of the system to ensure the target contaminants are not breaking through the treatment process (see below for additional details). Spent coconut carbon drums will be disposed of Uniform Hazardous Waste Manifest and Bill of Lading (BOL).

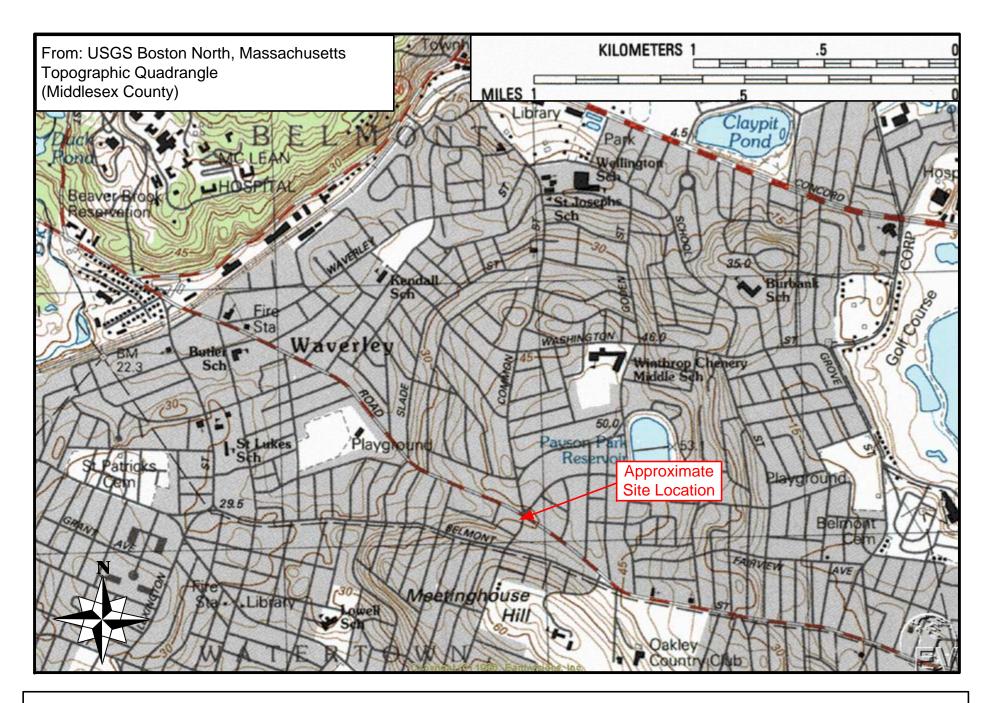
4.0 MONITORING ACTIVITIES

Monthly monitoring activities will be conducted by Coler & Colantonio, Inc. to ensure that the P&T System is maintaining compliance with the RGP. Based on previous sampling data, the chemicals of concern are volatile organic compounds (VOCs), lead, and total cyanide. Upon approval of the RGP, Coler & Colantonio will collect influent and effluent samples from the system on the first, third, and sixth day of discharge (if feasible with the intermittent discharge of the system); weekly for the first month; and then monthly. Samples will be analyzed for all compounds detected in the pre-remediation RGP parameter analysis and samples collected within the first week will be submitted for 72 hour analysis. The P&T will be immediately shutdown upon any indication of malfunction or violation of effluent limitations. In accordance with the RGP, a summary of the results will be submitted to the United State Environmental Protection Agency (EPA) Northeast (NE) office and the DEP Northeast Regional Office (NERO) if a violation of the effluent limits occurs.

Monthly samples will be collected at both the influent and effluent stages of the system to ensure the target contaminants are not breaking through the treatment process. Samples will be analyzed for all compounds detected in the pre-remediation RGP parameter analysis, including VOCs via EPA 524 Method, dissolved lead, and total cyanide. The system will be immediately shut down upon any indication of malfunction or violation of effluent limitations. In accordance with the RGP, a summary of the results will be submitted to the EPA-NE office and the DEP NERO if a violation of the effluent limits occurs, in addition to the RMRs that are submitted. The water level meter will be utilized to obtain the total monthly volume of groundwater discharged.

5.0 PREVENTATIVE MAINTENANCE PLAN

The P&T System has been operating efficiently over the past year and the monthly inspections have reduced any maintenance problems to a minimum. The system is streamline, and minimal prevention controls are necessary. Coler & Colantonio have utilized ground-fault intercepts to avoid electricity issues and elevated the drums to avoid potential rusting. If the system is compromised, Coler & Colantonio will immediately perform the necessary repairs or adjustments to resolve the issue.


6.0 EMPLOYEE TRAINING

Any employee who has direct or indirect responsibility for ensuring compliance with the RGP will be instructed in the requirements of the RGP. Employees will be made aware of the compounds which must be monitored, the appropriate laboratory methods for these compounds, and the appropriate sampling techniques and frequency required to maintain compliance with the RGP. Employees will be provided with a written description of the P&T System, as well as a flow diagram of the system, and will be instructed on the individual stages of the system and the proper maintenance of the system. Employees will be instructed on the proper monitoring procedures and frequency and will be provided with the appropriate monitoring forms. In addition, employees will be provided with the phone number of at least one emergency contact familiar with the P&T system and the requirement of the RGP. A Health and Safety Plan (HASP) has been prepared and is attached.

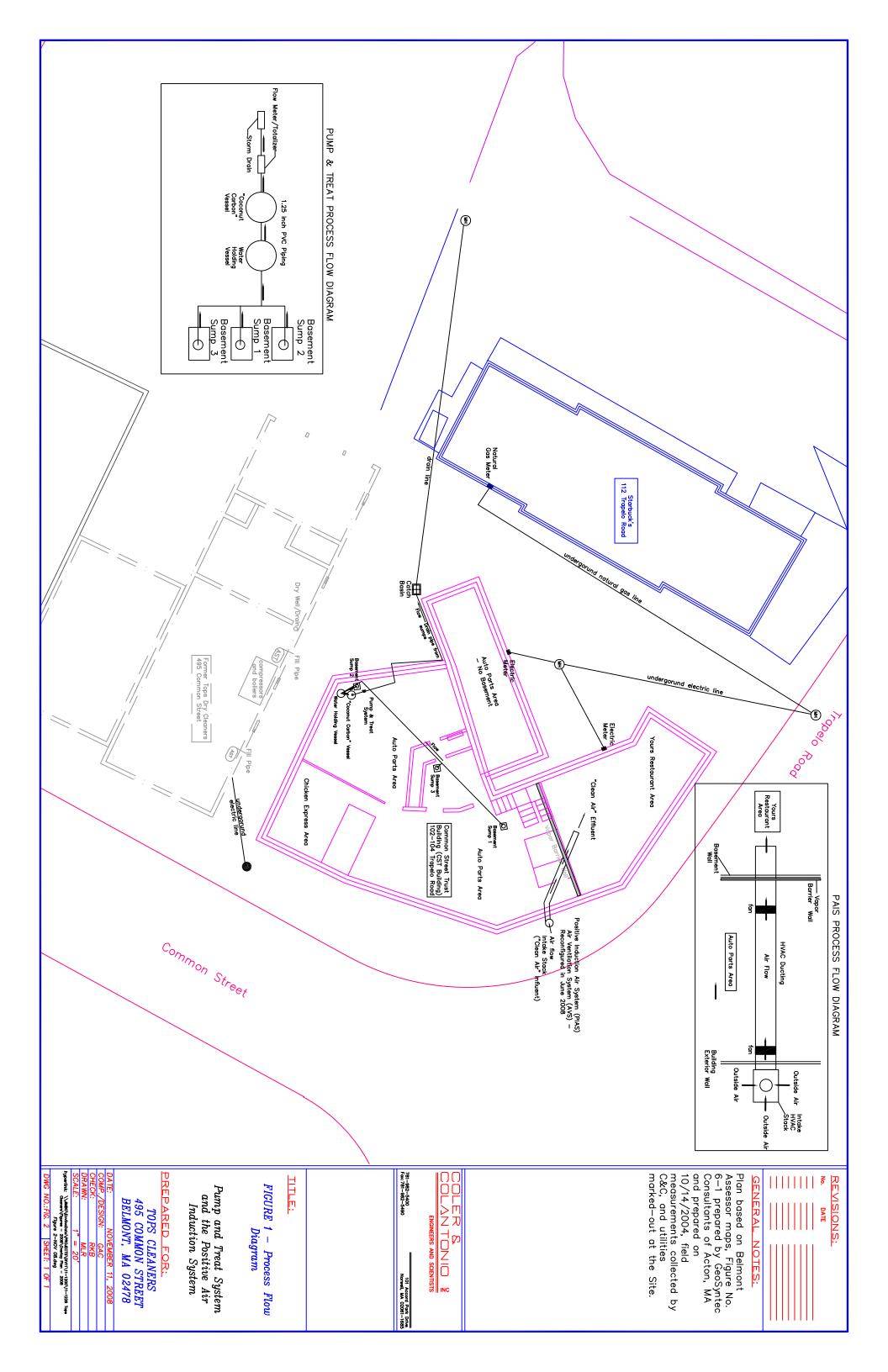

FIGURES

Figure 1 Figure 2 Site Plan

Pump & Treat Diagram

APPENDIX

HEALTH & SAFETY PLAN

Important: Please forward one copy of completed document to the reviewer three (3) working days <u>prior</u> to project start up and maintain a copy on site. Place signed copy in project file. Items marked with "1910.120..." are required by 29 CFR 1910.120 in the paragraph noted.

A. GENERAL INFOR	RMATION (1910.120(c)(4))					
Project Name Common	Street Trust (CST) Building Project Number 11-1226.00					
RTNs 3-23300	RTNs <u>3-23300</u>					
Project Manager Glen G	Cote					
- Gien C	Print Signature					
Site or Building Name	Common Street Trust (CST) Building – (Former Tops Cleaners Release)					
Address	102-104 Trapelo Road					
City, State & Zip	Belmont, MA					
Coler & Colantonio, Inc. S	afety & Health Supervisor Name Ronald Burns					
Coler & Colantonio, Inc. S	Safety & Health Supervisor Phone Number (781) 792-2230					
Client Contact Name	Chris Starr					
Client Contact Phone Numb	ber (978) 502-2276					
Fire #: 911	Police #: 911 Ambulance #: 911					
Nearest Hospital Name	Mount Auburn Hospital (approximately 8 mins drive time)					
Phone	(617) 499-5025					
Address	330 Mt. Auburn Street, Cambridge, MA					
Directions to Hospital	1. Head northeast on Common St. towards Trapelo Rd. (207 ft.)					
(see attached map)	ched map) 2. Turn right at Trapelo Rd. (0.2 mi)					
	3. Make a slight left at Belmont St. (1.1 mi)					
	4. Turn left at Mt. Auburn St./RT-16 and continue to follow for 0.3 mi.					
	5. Turn left at Brattle St. (66 ft.)					
	6. Turn right to stay on Brattle St. (0.4 mi)					
7. Turn right at Channing St. (0.1 mi)						
8. Turn left at Mt. Auburn St. (279 ft)						
_	9. Arrive at hospital on right.					
Location of Nearest Phone (and special dialing instruction	_Inside CST building; cell phone ns if any)					
Directions for Emergency E	Escape Head southwest on Common St. for 66 ft. then turn right at Horne Rd.					

Turn right onto Williston Rd. and travel for 184 ft.
Designated Reporting Area (after emergency occurrence) Parking Lot at 36 Williston Road
B. SITE DESCRIPTION (1910.120(c)(4))
Facility History:
Commercial and Retail Property - Former Dry Cleaning Operations abuts the property
Гуре of Hazard Anticipated On Site (i.e. tanks, drums, etc.):
Contaminated air, soil and groundwater.
Amount of Honordone Motorials Duccout.
Amount of Hazardous Materials Present: The area containing soils and groundwater with contaminant concentrations avecading applicable MCP
The area containing soils and groundwater with contaminant concentrations exceeding applicable MCP Method 1 Cleanup Standards exists beneath the former Tops Dry Cleaner building, the common alleyway, and the extreme southern portion of the Starbucks property and portions of the Common Street Trust (CST) building to the northeast.
Water Supply:
First Floor and Basement of CST building
General Site Description (including topography, accessibility, & site size):
The Site is located on a 6,400 sf commercial property. Access to the property is from Common St. thorough alley way and Trapelo Rd through alley way.
Flat topography.
See attached Site map
C. PROJECT OBJECTIVE(S) (1910.120(b)(3))
(Description of work area activities planned:)
Gauging and sampling of monitoring wells as well as soil gas monitoring will be conducted at the Site.
Maintaining Pump and Treat System in basement of CST building.
Estimated Duration of Activities: May 2005-December 2010

D. PROJECT ORGANIZATION (1910.120(b)(2))

Team Member	Responsibility	Type of Training Date of Training		
Ronald Burns	Safety & Health Supervisor	C & D	3/15/08	
William R. Hoyerman	General Supervisor	C & D	3/15/08	
Glen Cote	General Supervisor/Site Worker	A & D	3/15/08	
Jake Hurley	General Site Worker	A & D		

Training Codes:

- A minimum of 40 hours of instruction off the site & a minimum of 3 days field experience under the direct supervision of a trained experienced supervisor (appropriate for general site workers such as equipment operators, general laborers & supervisory personnel engaged in hazardous substance removal or other activities which expose or potentially expose workers to hazardous substances and health hazards)
- B minimum of 24 hours of instruction off the site & a minimum of 1 day field experience under the direct supervision of a trained experienced supervisor (appropriate for workers on site only occasionally for a specific limited task such as groundwater monitoring, land surveying, or geophysical surveying & who are unlikely to be exposed over permissible & published exposure limits or workers regularly on site who work in areas which have been monitored & fully characterized indicating that exposures are under permissible & published exposure limits, where respirators are not necessary, & the characterization indicates that there are no health hazards or the possibility of an emergency developing)
- C minimum of 40 hours of instruction off the site & a minimum of 3 days field experience under the direct supervision of a trained experienced supervisor and at least 8 additional hours of specialized training on such topics as the employer's safety & health program, PPE program, spill containment program, & health hazard monitoring procedure and techniques (appropriate for on-site management and supervisors directly responsible for or who supervise employees engaged in hazardous waste operations)
- D 8 hours of annual refresher training (appropriate for general site workers such as equipment operators, general laborers & supervisory personnel engaged in hazardous substance removal or other activities which expose or potentially expose workers to hazardous substances and health hazards & on-site management and supervisors directly responsible for or who supervise employees engaged in hazardous waste operations)
- E equivalent training (includes any academic training or the training that employees might have had from actual hazardous waste site experience)

Responsibility Safety & Health Supervisor	Description Responsible for the implementation of the site health & safety plan & verify compliance with applicable safety & health requirements. May also conduct remediation oversight, sample collection, and field monitoring.
General Supervisor	Directs all hazardous waste operations. May also conduct remediation oversight, sample collection, and field monitoring.
General Site Worker	Conducts remediation oversight, sample collection, and field monitoring.

E. CHEMICAL HAZARD ANALYSIS (1910.120(b)(4))

Contaminant	IP	PEL/TLV	IDLH	LEL/UEL	Flash Point	Routes of Exposure
Tetrachloroethylene		100 ppm/25 ppm			Not flammable	Absorption, inhalation, ingestion
Trichloroethylene						
cis-1,2-dichloroethene		N/A		9.70%/12.8%	42.80°F	Absorption, inhalation, ingestion
Vinyl chloride		1 ppm/5 ppm		3.6% (LEL)	-108°F	Absorption, inhalation, ingestion
1,1-dichloroethene		100 ppm			1.4°F	Absorption, inhalation, ingestion

NOTE: Attach Material Safety Data Sheets for all substances identified above. Also see Section (M) (2).

F.	OTHER HAZARDS

Heat Stress? X Yes No If yes, please specify precautions to be taken:					
Suitable clothing which adequately ventilates must be worn. Drink a suitable amount of fluids.					
If necessary, rest in a cool, shaded location.					
Cold Stress? X Yes No If yes, please specify precautions to be taken:					
Suitable clothing which adequately insulates must be worn at all times, this includes a hat and					
Gloves. If necessary, warm up in a vehicle or nearby building.					
Excessive Noise? Yes X No If yes, please specify precautions to be taken:					
Confined Space Entry? Yes X No If yes, attach copy of Confined Space Entry Permit.					
Excavations 4' or greater in depth? Yes X No If yes, specify precautions to be taken:					
Welding, Cutting & Brazing? Yes X No If yes, specify precautions to be taken:					

	Heavy Equipment C	peration? Yes	X No	If yes, specify precau	utions to be taken:				
	Slip, Trip or Fall Ha	zards? X Yes	No	If yes, specify precau	utions to be taken:				
	Properly store equipment when not in use. Be aware of scattered debris throughout the Site.								
	Presence of Overhea	d Utilities							
		es present at the project site	e?	X Yes No					
	*If so, <u>always</u> main	tain suitable clearance fr	om overhea	d lines.					
	Specify location:								
	Presence of Undergr	ound Utilities							
	Have underground u	tilities been located and m	narked at the	site?	Yes No NA				
	Specify names and p	hone number of utilities co	ontact:						
	Name of Contact	Dig Safe							
	Phone Number	1-888-344-7233							
G.	SITE CONTROL	(1910.120(d))							
	Work Zones have b	een established as shown o	on the attache	ed Site Plan .					
	Site Security: Secur	ity on site will be maintain	ned by:						
	Temporary barricades and/or warning tape								
	X Security Fencing – parking lot is fenced-in.								
		24 Hour Security							
	X	Other (specify) Aspha	alt, secure we	ll caps					
	PERSONAL PRO	OTECTIVE EQUIPM	MENT (19	910.120(b)(4)) (LIS	T EXPOSURES UNDER				
***	•	of potential hazards, the	following le	vels of personal prote	ction have been designated for				
	the applicable work	•	J	1 1	C				
	Work Zone	Level of Protection	Red	quired Protective Equi	pment (specify exact type e.g. nitrile gloves)				
	Exclusion Zone	D		Respirator:	_				
			F	ilters/Cartridges:					
				Boots:	Chemical resistant				
				Inner Gloves:					
				filler Gloves:					

Tops Cleaners
11-1226.00

Health & Safety Plan
prepared by Coler & Colantonio, Inc.

Page 5

		Outer Gloves:	Nitrile
		Protective Coverall:	Work uniform
		Hard Hat:	
		Eye Protection:	Safety Glasses
		Ear Protection:	
		Other:	
Contamination	D	Respirator:	
Reduction Zone		Filters/Cartridges:	
		Boots:	Chemical resistant
		Inner Gloves:	
		Outer Gloves:	nitrile
		Protective Coverall:	Work uniform
		Hard Hat:	
		Eye Protection:	
		Ear Protection::	
		Other:	
Exceptions and Modifi	ications:		
DECONTAMINATE Personnel Decontamin)	
	g the Exclusion Zone	will undergo decontamination prior to nination stations:	o leaving the Site. Personnel
Decontamination Solu	ition: Alconox an	d water	
STATION #1: Scr	rub all reusable equipn	nent thoroughly with decontamination	solution.
Equipment Required:	Decontamination	solution, clean brush or rag	
STATION #2: Rin	nse and dry all reusable	e equipment	_

I.

Equipment Required: Clean water and paper towels				
Equipment Deconta	mination			
Gross Removal By:				
X	Hand Scrubbing			
	Cold High Pressure Wash			
	Hot High Pressure Wash			
	Steam Cleaning			
	Other (specify)			
X	Clean Rinse			
X	Decon solution (specify) Alc	onox & water		
Decontamination W	aste Water			
	Collect decontemination	n waste water in a bucket		
Collection (specify	now):			
Diagram Diagram (a				
Direct Discharge (s	pecify how and where):			
Des Transfers of Cons	-16.0.			
Pre-Treatment (spec	::iiy):			
Disposal (specify he	ow and where): Pour deconta	mination on surface for evapora	ation (< 1 gallon)	
AMBIENT AIR	MONITORING (1910.120(b))	(4))		
Activity & Contart		Action Level	Frequency	
•				
Indoor air (if noted)	PID	10 ppmv at breathing zone	15 minutes or longer	
	-			
	·			

J.

	Comments: If action level is observed, secure source (if known), ventilate area, and vacate until levels subside or additional PPE can be acquired. PERSONNEL AIR MONITORING (1910.120(h))					
K.						
	Activity/Location	Contaminants(s) NIOSH/OSHA Protocol				
	<u>-</u>					
	_					
L.	. CONTINGENCY PLAN (1910.120(l))					
	Emergency Communication Signal(s) (specify):					
	Emergency Escape Route(s) (specify and indicate on site diagram): Head southwest on Continuous Con					
	for 66 ft. then turn right at Horne Rd	. Turn right onto Williston Rd. and travel for 184 ft. to the parking lot				
	At 36 Williston Rd.					
Eme	ergency Equipment On Site: (specify lo	ocation):				
	First Aid Kit:	In Company Vehicle				
	Fire Extinguishers:	In Company Vehicle				
	Telephone:	Cell phone				
	Water Supply:	Inside the CST building in bathrooms				
	Eye Wash/Safety Shower:	Use water supply in bathrooms				
	Others (specify):					

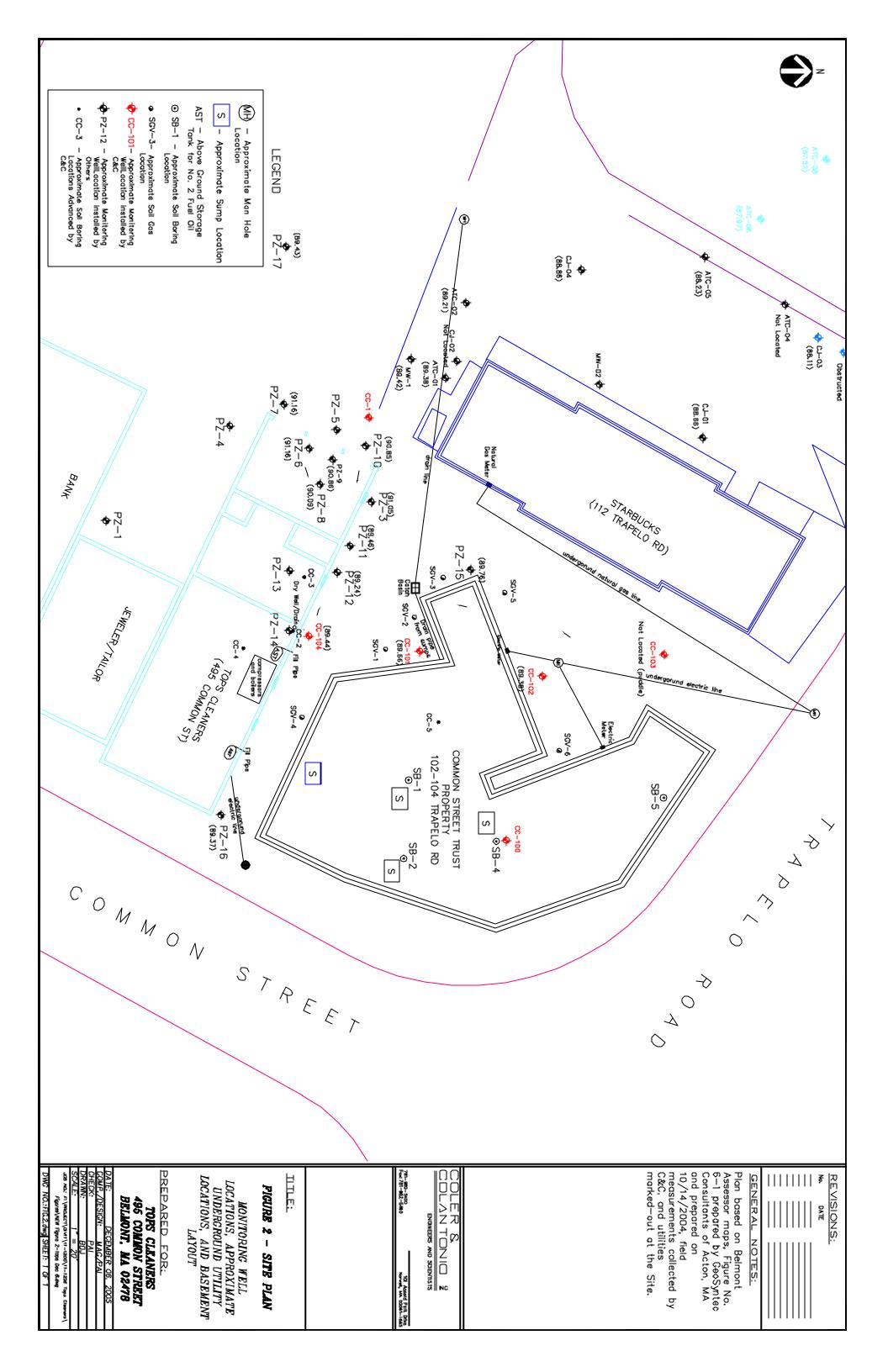
Re-entry to the Exclusion Zone following an on-site emergency shall not be permitted until the following conditions are satisfied:

- (1) The conditions resulting in an emergency have been corrected.
- (2) The hazards have been re-evaluated.
- (3) The HASP has been reviewed and determined adequate for the hazards encountered.
- (4) All site personnel have been instructed in any new hazards and changes to the HASP.

N. ATTACHMENTS

The following items have been amended to this Health & Safety Plan:

- 1) Hospital Map
- 2) Site Plan
- **Emergency Phone Numbers List** 3)
- **HASP Review List** 4)
- MSDS 5)


** EMERGENCY PHONE NUMBERS **

---- Post in Full View ----

Coler & Colantonio, Inc.	Safety & Health Superv	risor(781) 982-5400 x 230
Chemtrec		(800) 424-9300
DOT Hotline Materials Transportation		(202) 366-4488
Centers for Disease Contr (Emergency Only)	ol and Prevention	(404) 633-5313
	ncy Responsend Remedial Response	(202) 260-2180
TSCA Assistance Informa	ation Services Hotline	(202) 554-1404
HOSPITAL:	(Name):	Mount Auburn Hospital
	(Address):	330 Mt. Auburn Street, Cambridge, MA
	(Phone):	(617) 499-5025
	(Travel Time):	8 minutes
(Directions to Hospital)	1. Head northeast on Common St. towards Trapelo Rd. (207 ft.)
	(see attached map)	2. Turn right at Trapelo Rd. (0.2 mi)
		3. Make a slight left at Belmont St. (1.1 mi)
		4. Turn left at Mt. Auburn St./RT-16 and continue to follow for 0.3 mi.
		5. Turn left at Brattle St. (66 ft.)
		6. Turn right to stay on Brattle St. (0.4 mi)
		7. Turn right at Channing St. (0.1 mi)
		8. Turn left at Mt. Auburn St. (279 ft)
		9. Arrive at hospital on right.
PARAMEDICS:	(Name):	Belmont Emergency Medical Services
	(Phone):	911
FIRE DEPT:	(Name):	Belmont Fire Department
	(Phone):	911
LOCAL POLICE:	(Name):	Belmont Police Department
	(Phone):	911
UTILITIES:	(Electric):	
	(Gas):	

All personnel have read the HASP and are familiar with its provisions. All personnel have received training in compliance with the Coler & Colantonio, Inc.'s Health and Safety Policy.

<u>NAME</u>	<u>SIGNATURE</u>	<u>DATE</u>
		-
		-

Start 495 Common St Belmont, MA 02478 End Mount Auburn Hospital 330 Mount Auburn St, Cambridge, MA 02138

Travel 2.3 mi - about 8 mins

495 Common St Belmont, MA 02478

Drive: 2.3 mi - about 8 mins

1. Head northeast on Common St toward Trapelo Rd	207 ft
→ 2. Turn right at Trapelo Rd	0.2 mi 1 min
← 3. Slight left at Belmont St	1.1 mi 3 mins
← 4. Turn left at Mt Auburn St/RT-16 Continue to follow Mt Auburn St	0.3 mi 1 min
← 5. Turn left at Brattle St	66 ft
→ 6. Turn right to stay on Brattle St	0.4 mi 2 mins
→ 7. Turn right at Channing St	0.1 mi
← 8. Turn left at Mt Auburn St	279 ft

Mount Auburn Hospital 330 Mount Auburn St, Cambridge, MA 02138

These directions are for planning purposes only. You may find that construction projects, traffic, or other events may cause road conditions to differ from the map results.

Map data ©2008 NAVTEQ™

Overview

Start

Map data ©2008 NAVTEQ™

Health	2
Fire	3
Reactivity	0
Personal Protection	Н

Material Safety Data Sheet 1,1-Dichloroethane MSDS

Section 1: Chemical Product and Company Identification

Product Name: 1,1-Dichloroethane

Catalog Codes: SLD3280

CAS#: 75-34-3

RTECS: KI0175000

TSCA: TSCA 8(b) inventory: 1,1-Dichloroethane

CI#: Not available.

Synonym:

Chemical Name: 1,1-Dichloroethane

Chemical Formula: C2-H4-Cl2

Contact Information:

Sciencelab.com. Inc. 14025 Smith Rd.

Houston, Texas 77396

US Sales: 1-800-901-7247

International Sales: 1-281-441-4400

Order Online: ScienceLab.com

CHEMTREC (24HR Emergency Telephone), call:

1-800-424-9300

International CHEMTREC, call: 1-703-527-3887

For non-emergency assistance, call: 1-281-441-4400

Section 2: Composition and Information on Ingredients

Composition:

Name	CAS#	% by Weight
{1,1-}Dichloroethane	75-34-3	100

Toxicological Data on Ingredients: 1,1-Dichloroethane: ORAL (LD50): Acute: 725 mg/kg [Rat].

Section 3: Hazards Identification

Potential Acute Health Effects: Hazardous in case of skin contact (irritant), of eye contact (irritant), of ingestion, of inhalation.

Potential Chronic Health Effects:

CARCINOGENIC EFFECTS: Classified 2 (Reasonably anticipated.) by NTP. A4 (Not classifiable for human or

animal.) by ACGIH.

MUTAGENIC EFFECTS: Not available. TERATOGENIC EFFECTS: Not available.

DEVELOPMENTAL TOXICITY: Classified Development toxin [POSSIBLE]. The substance is toxic to kidneys, lungs, liver, central nervous system (CNS).

Repeated or prolonged exposure to the substance can produce target organs damage.

Section 4: First Aid Measures

Eye Contact: Check for and remove any contact lenses. Do not use an eye ointment. Seek medical attention.

Skin Contact:

After contact with skin, wash immediately with plenty of water. Gently and thoroughly wash the contaminated skin with running water and non-abrasive soap. Be particularly careful to clean folds, crevices, creases and groin. Cover the irritated skin with an emollient. If irritation persists, seek medical attention. Wash contaminated clothing before reusing.

Serious Skin Contact:

Wash with a disinfectant soap and cover the contaminated skin with an anti-bacterial cream. Seek immediate medical attention.

Inhalation: Allow the victim to rest in a well ventilated area. Seek immediate medical attention.

Serious Inhalation:

Evacuate the victim to a safe area as soon as possible. Loosen tight clothing such as a collar, tie, belt or waistband. If breathing is difficult, administer oxygen. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek medical attention.

Ingestion:

Do not induce vomiting. Examine the lips and mouth to ascertain whether the tissues are damaged, a possible indication that the toxic material was ingested; the absence of such signs, however, is not conclusive. Loosen tight clothing such as a collar, tie, belt or waistband. If the victim is not breathing, perform mouth-to-mouth resuscitation. Seek immediate medical attention.

Serious Ingestion: Not available.

Section 5: Fire and Explosion Data

Flammability of the Product: Flammable.

Auto-Ignition Temperature: 458°C (856.4°F)

Flash Points: CLOSED CUP: -17°C (1.4°F). OPEN CUP: -6°C (21.2°F).

Flammable Limits: LOWER: 5.6% UPPER: 11.4%

Products of Combustion: These products are carbon oxides (CO, CO2), halogenated compounds.

Fire Hazards in Presence of Various Substances: Not available.

Explosion Hazards in Presence of Various Substances:

Risks of explosion of the product in presence of mechanical impact: Not available. Risks of explosion of the product in presence of static discharge: Not available.

Fire Fighting Media and Instructions:

Flammable liquid.

SMALL FIRE: Use DRY chemical powder.

LARGE FIRE: Use alcohol foam, water spray or fog.

Special Remarks on Fire Hazards: Not available.

Special Remarks on Explosion Hazards: Not available.

Section 6: Accidental Release Measures

Small Spill: Absorb with an inert material and put the spilled material in an appropriate waste disposal.

Large Spill:

Flammable liquid.

Keep away from heat. Keep away from sources of ignition. Stop leak if without risk. Absorb with DRY earth,

sand or other non-combustible material. Do not touch spilled material. Prevent entry into sewers, basements or confined areas; dike if needed. Eliminate all ignition sources. Be careful that the product is not present at a concentration level above TLV. Check TLV on the MSDS and with local authorities.

Section 7: Handling and Storage

Precautions:

Keep locked up Keep away from heat. Keep away from sources of ignition. Ground all equipment containing material. Do not ingest. Do not breathe gas/fumes/ vapour/spray. Wear suitable protective clothing In case of insufficient ventilation, wear suitable respiratory equipment If ingested, seek medical advice immediately and show the container or the label. Avoid contact with skin and eyes Keep away from incompatibles such as oxidizing agents, alkalis.

Storage:

Flammable materials should be stored in a separate safety storage cabinet or room. Keep away from heat. Keep away from sources of ignition. Keep container tightly closed. Keep in a cool, well-ventilated place. Ground all equipment containing material. A refrigerated room would be preferable for materials with a flash point lower than 37.8°C (100°F).

Section 8: Exposure Controls/Personal Protection

Engineering Controls:

Provide exhaust ventilation or other engineering controls to keep the airborne concentrations of vapors below their respective threshold limit value. Ensure that eyewash stations and safety showers are proximal to the work-station location.

Personal Protection:

Splash goggles. Lab coat. Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Gloves.

Personal Protection in Case of a Large Spill:

Splash goggles. Full suit. Vapor respirator. Boots. Gloves. A self contained breathing apparatus should be used to avoid inhalation of the product. Suggested protective clothing might not be sufficient; consult a specialist BEFORE handling this product.

Exposure Limits:

TWA: 100 STEL: 250 (ppm) from ACGIH (TLV) [1999]

TWA: 100 (ppm) from OSHA (PEL)

Australia: TWA: 200 (ppm)

Consult local authorities for acceptable exposure limits.

Section 9: Physical and Chemical Properties

Physical state and appearance: Liquid. (Oily liquid.)

Odor: Chloroform like odor (Slight.)

Taste: Not available.

Molecular Weight: 98.96 g/mole

Color: Colorless.

pH (1% soln/water): Not available.

Boiling Point: 57.3°C (135.1°F)

Melting Point: -96.9°C (-142.4°F)

Critical Temperature: 261.5°C (502.7°F)

Specific Gravity: 1.175 (Water = 1)

Vapor Pressure: 180 mm of Hg (@ 20°C)

Vapor Density: 3.44 (Air = 1)

Volatility: Not available.

Odor Threshold: 120 ppm

Water/Oil Dist. Coeff.: Not available.

Ionicity (in Water): Not available.

Dispersion Properties:

Partially dispersed in diethyl ether. See solubility in water, diethyl ether.

Solubility: Partially soluble in diethyl ether.

Section 10: Stability and Reactivity Data

Stability: The product is stable.

Instability Temperature: Not available.

Conditions of Instability: Not available.

Incompatibility with various substances: Reactive with oxidizing agents, alkalis.

Corrosivity: Corrosive in presence of aluminum.

Special Remarks on Reactivity: Not available.

Special Remarks on Corrosivity: Will attack some forms of plastic and rubber

Polymerization: No.

Section 11: Toxicological Information

Routes of Entry: Absorbed through skin. Eye contact. Inhalation. Ingestion.

Toxicity to Animals: Acute oral toxicity (LD50): 725 mg/kg [Rat].

Chronic Effects on Humans:

CARCINOGENIC EFFECTS: Classified 2 (Reasonably anticipated.) by NTP. A4 (Not classifiable for human or

animal.) by ACGIH.

DEVELOPMENTAL TOXICITY: Classified Development toxin [POSSIBLE]. The substance is toxic to kidneys, lungs, liver, central nervous system (CNS).

Other Toxic Effects on Humans: Hazardous in case of skin contact (irritant), of ingestion, of inhalation.

Special Remarks on Toxicity to Animals: Not available.

Special Remarks on Chronic Effects on Humans: Not available.

Special Remarks on other Toxic Effects on Humans: Not available.

Section 12: Ecological Information

Ecotoxicity: Not available.

BOD5 and COD: Not available.

Products of Biodegradation:

 ${\it Possibly hazardous short term degradation products are not likely. However, long term degradation products may}$

arise.

Toxicity of the Products of Biodegradation: The products of degradation are as toxic as the product itself.

Special Remarks on the Products of Biodegradation: Not available.

Section 13: Disposal Considerations

Waste Disposal:

Section 14: Transport Information

DOT Classification:

CLASS 3: Combustible liquid with a flash point greater than 37.8C (100F).

Marine pollutant

Identification: : 1,1-Dichloroethane : UN2362 PG: II

Special Provisions for Transport: Not available.

Section 15: Other Regulatory Information

Federal and State Regulations:

California prop. 65 (no significant risk level): 1,1-Dichloroethane

California prop. 65: This product contains the following ingredients for which the State of California has found to

cause cancer which would require a warning under the statute: 1,1-Dichloroethane

Rhode Island RTK hazardous substances: 1,1-Dichloroethane

Pennsylvania RTK: 1,1-Dichloroethane

Florida: 1,1-Dichloroethane Minnesota: 1,1-Dichloroethane

Massachusetts RTK: 1,1-Dichloroethane

New Jersey: 1,1-Dichloroethane

New Jersey spill list: 1,1-Dichloroethane TSCA 8(b) inventory: 1,1-Dichloroethane TSCA 8(a) PAIR: 1,1-Dichloroethane

TSCA 8(d) H and S data reporting: 1,1-Dichloroethane: June 1999

TSCA 12(b) one time export: 1,1-Dichloroethane

SARA 313 toxic chemical notification and release reporting: 1.1-Dichloroethane: 1%

CERCLA: Hazardous substances.: 1,1-Dichloroethane: 1000 lbs. (453.6 kg)

Other Regulations:

OSHA: Hazardous by definition of Hazard Communication Standard (29 CFR 1910.1200).

EINECS: This product is on the European Inventory of Existing Commercial Chemical Substances.

Other Classifications:

WHMIS (Canada):

CLASS B-2: Flammable liquid with a flash point lower than 37.8°C (100°F).

CLASS D-2B: Material causing other toxic effects (TOXIC).

DSCL (EEC):

R11- Highly flammable.

R22- Harmful if swallowed.

R37/38- Irritating to respiratory system

and skin.

R41- Risk of serious damage to eyes.

R52- Harmful to aquatic organisms.

HMIS (U.S.A.):

Health Hazard: 2

Fire Hazard: 3

Reactivity: 0

Personal Protection: h

National Fire Protection Association (U.S.A.):

Health: 2

Flammability: 3

Reactivity: 0

Specific hazard:

Protective Equipment:

Gloves. Lab coat.

Vapor respirator. Be sure to use an approved/certified respirator or equivalent. Wear appropriate respirator

when ventilation is inadequate.

Splash goggles.

Section 16: Other Information

References: Not available.

Other Special Considerations: Not available.

Created: 10/09/2005 05:07 PM

Last Updated: 10/09/2005 05:07 PM

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall ScienceLab.com be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if ScienceLab.com has been advised of the possibility of such damages.

Material Safety Data Sheet

cis-1,2-Dichloroethylene, 97%

ACC# 97773

Section 1 - Chemical Product and Company Identification

MSDS Name: cis-1,2-Dichloroethylene, 97%

Catalog Numbers: AC113380000, AC113380025, AC113380100

Synonyms: cis-Acetylene dichloride.

Company Identification:

Acros Organics N.V. One Reagent Lane Fair Lawn, NJ 07410

For information in North America, call: 800-ACROS-01 For emergencies in the US, call CHEMTREC: 800-424-9300

Section 2 - Composition, Information on Ingredients

CAS#	Chemical Name	Percent	EINECS/ELINCS
156-59-2	cis-1,2-Dichloroethylene	97	205-859-7

Section 3 - Hazards Identification

EMERGENCY OVERVIEW

Appearance: Clear liquid. Flash Point: 6 deg C.

Warning! Flammable liquid and vapor. Harmful if inhaled. Unstabilized substance may polymerize. Causes eye and skin irritation. May be harmful if swallowed. May cause respiratory tract irritation.

Target Organs: Central nervous system, respiratory system, eyes, skin.

Potential Health Effects

Eye: Causes moderate eye irritation.

Skin: Causes moderate skin irritation. May cause dermatitis.

Ingestion: May cause gastrointestinal irritation with nausea, vomiting and diarrhea. May be

harmful if swallowed. May cause central nervous system depression.

Inhalation: May cause respiratory tract irritation. May cause narcotic effects in high concentration.

Eye irritation, vertigo, and nausea were reported in humans exposed at 2200 ppm.

Chronic: Not available. Some German investigators reported fatty degeneration of the liver upon

repeated narcotic doses in rats and

Section 4 - First Aid Measures

Eyes: In case of contact, immediately flush eyes with plenty of water for a t least 15 minutes. Get medical aid.

Skin: In case of contact, flush skin with plenty of water. Remove contaminated clothing and shoes.

Get medical aid if irritation develops and persists. Wash clothing before reuse.

Ingestion: If swallowed, do not induce vomiting unless directed to do so by medical personnel.

Never give anything by mouth to an unconscious person. Get medical aid.

Inhalation: If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing

is difficult, give oxygen. Get medical aid.

Notes to Physician: Treat symptomatically and supportively.

Section 5 - Fire Fighting Measures

General Information: As in any fire, wear a self-contained breathing apparatus in pressure-demand, MSHA/NIOSH (approved or equivalent), and full protective gear. Vapors may form an explosive mixture with air. Use water spray to keep fire-exposed containers cool. Flammable liquid and vapor. Fire or excessive heat may result in violent rupture of the container due to bulk polymerization. Vapors are heavier than air and may travel to a source of ignition and flash back. Vapors can spread along the ground and collect in low or confined areas. Hazardous polymerization may occur under fire conditions.

Extinguishing Media: Use water fog, dry chemical, carbon dioxide, or regular foam.

Flash Point: 6 deg C (42.80 deg F)

Autoignition Temperature: 440 deg C (824.00 deg F)

Explosion Limits, Lower: 9.70 vol %

Upper: 12.80 vol %

NFPA Rating: (estimated) Health: 2; Flammability: 3; Instability: 2

Section 6 - Accidental Release Measures

General Information: Use proper personal protective equipment as indicated in Section 8. **Spills/Leaks:** Absorb spill with inert material (e.g. vermiculite, sand or earth), then place in suitable container. Remove all sources of ignition. Use a spark-proof tool. Provide ventilation.

Section 7 - Handling and Storage

Handling: Wash thoroughly after handling. Remove contaminated clothing and wash before reuse. Ground and bond containers when transferring material. Use spark-proof tools and explosion proof equipment. Avoid contact with eyes, skin, and clothing. Empty containers retain product residue, (liquid and/or vapor), and can be dangerous. Avoid ingestion and inhalation. Do not pressurize, cut, weld, braze, solder, drill, grind, or expose empty containers to heat, sparks or open flames. Use only with adequate ventilation. Pure vapor will be uninhibited and may polymerize in vents or other confined spaces.

Storage: Keep away from sources of ignition. Store in a tightly closed container. Flammables-area. Store protected from light and air.

Section 8 - Exposure Controls, Personal Protection

Engineering Controls: Use process enclosure, local exhaust ventilation, or other engineering controls to control airborne levels below recommended exposure limits. Facilities storing or utilizing this material should be equipped with an eyewash facility and a safety shower.

Exposure Limits

Chemical Name	ACGIH	NIOSH	OSHA - Final PELs
cis-1,2-Dichloroethylene	200 ppm TWA	none listed	none listed

OSHA Vacated PELs: cis-1,2-Dichloroethylene: No OSHA Vacated PELs are listed for this

chemical.

Personal Protective Equipment

Eyes: Wear chemical splash goggles.

Skin: Wear appropriate protective gloves to prevent skin exposure. **Clothing:** Wear appropriate protective clothing to prevent skin exposure.

Respirators: Follow the OSHA respirator regulations found in 29 CFR 1910.134 or European

Standard EN 149. Use a NIOSH/MSHA or European Standard EN 149 approved respirator if exposure limits are exceeded or if irritation or other symptoms are experienced.

Section 9 - Physical and Chemical Properties

Physical State: Liquid Appearance: Clear Odor: Pleasant odor ph: Not available.

Vapor Pressure: 201 mm Hg @ 25 deg C

Vapor Density: 3.34 (air=1)
Evaporation Rate:Not available.

Viscosity: Not available.

Boiling Point: 60 deg C @ 760 mm Hg **Freezing/Melting Point**:-80 deg C

Decomposition Temperature: Not available.

Solubility: Insoluble.

Specific Gravity/Density:1.2800 Molecular Formula:C2H2Cl2 Molecular Weight:96.94

Section 10 - Stability and Reactivity

Chemical Stability: Stable under normal temperatures and pressures. This material is a monomer and may polymerize under certain conditions if the stabilizer is lost.

Conditions to Avoid: Light, ignition sources, exposure to air, excess heat.

Incompatibilities with Other Materials: Strong oxidizing agents, strong bases, copper.

Hazardous Decomposition Products: Hydrogen chloride, phosgene, carbon monoxide, carbon

dioxide.

Hazardous Polymerization: May occur.

Section 11 - Toxicological Information

RTECS#:

CAS# 156-59-2: KV9420000

LD50/LC50: CAS# 156-59-2: Inhalation, rat: LC50 = 13700 ppm;

.

Carcinogenicity:

CAS# 156-59-2: Not listed by ACGIH, IARC, NTP, or CA Prop 65.

Epidemiology: No data available. **Teratogenicity:** No data available.

Reproductive Effects: No data available.

Mutagenicity: No data available. **Neurotoxicity:** No data available.

Other Studies:

Section 12 - Ecological Information

No information available.

Section 13 - Disposal Considerations

Chemical waste generators must determine whether a discarded chemical is classified as a hazardous waste. US EPA guidelines for the classification determination are listed in 40 CFR Parts 261.3. Additionally, waste generators must consult state and local hazardous waste regulations to ensure complete and accurate classification.

RCRA P-Series: None listed. RCRA U-Series: None listed.

Section 14 - Transport Information

	US DOT	Canada TDG
Shipping Name:	DOT regulated - small quantity provisions apply (see 49CFR173.4)	1,2-DICHLOROETHYLENE
Hazard Class:		3
UN Number:		UN1150
Packing Group:		II

Section 15 - Regulatory Information

US FEDERAL

TSCA

CAS# 156-59-2 is listed on the TSCA inventory.

Health & Safety Reporting List

None of the chemicals are on the Health & Safety Reporting List.

Chemical Test Rules

None of the chemicals in this product are under a Chemical Test Rule.

Section 12b

None of the chemicals are listed under TSCA Section 12b.

TSCA Significant New Use Rule

None of the chemicals in this material have a SNUR under TSCA.

CERCLA Hazardous Substances and corresponding RQs

None of the chemicals in this material have an RQ.

SARA Section 302 Extremely Hazardous Substances

None of the chemicals in this product have a TPQ.

Section 313 No chemicals are reportable under Section 313.

Clean Air Act:

This material does not contain any hazardous air pollutants.

This material does not contain any Class 1 Ozone depletors.

This material does not contain any Class 2 Ozone depletors.

Clean Water Act:

None of the chemicals in this product are listed as Hazardous Substances under the CWA.

None of the chemicals in this product are listed as Priority Pollutants under the CWA.

None of the chemicals in this product are listed as Toxic Pollutants under the CWA.

OSHA:

None of the chemicals in this product are considered highly hazardous by OSHA.

STATE

CAS# 156-59-2 can be found on the following state right to know lists: Pennsylvania, Massachusetts.

California Prop 65

California No Significant Risk Level: None of the chemicals in this product are listed.

European/International Regulations

European Labeling in Accordance with EC Directives

Hazard Symbols:

XN F

Risk Phrases:

R 11 Highly flammable.

R 20 Harmful by inhalation.

R 52/53 Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Safety Phrases:

S 16 Keep away from sources of ignition - No smoking.

S 29 Do not empty into drains.

S 7 Keep container tightly closed.

S 61 Avoid release to the environment. Refer to special instructions /safety data sheets.

WGK (Water Danger/Protection)

CAS# 156-59-2: No information available.

Canada - DSL/NDSL

CAS# 156-59-2 is listed on Canada's NDSL List.

Canada - WHMIS

WHMIS: Not available.

This product has been classified in accordance with the hazard criteria of the Controlled Products Regulations and the MSDS contains all of the information required by those regulations.

Canadian Ingredient Disclosure List

Section 16 - Additional Information

MSDS Creation Date: 2/09/1998 **Revision #5 Date:** 3/16/2007

The information above is believed to be accurate and represents the best information currently available to us. However, we make no warranty of merchantability or any other warranty, express or implied, with respect to such information, and we assume no liability resulting from its use. Users should make their own investigations to determine the suitability of the information for their particular purposes. In no event shall Fisher be liable for any claims, losses, or damages of any third party or for lost profits or any special, indirect, incidental, consequential or exemplary damages, howsoever arising, even if Fisher has been advised of the possibility of such damages.

MSDS Number: T4940 * * * * * Effective Date: 12/06/07 * * * * * Supercedes: 08/01/05

Additional Part of the Chemical Suppose of the Che

All non-emergency questions should be directed to Customer Service (1-800-582-2537) for assistance

TRICHLOROETHYLENE

1. Product Identification

Synonyms: Trichloroethene; TCE; acetylene trichloride; Ethinyl trichloride

CAS No.: 79-01-6 Molecular Weight: 131.39 Chemical Formula: C2HCl3

Product Codes:

J.T. Baker: 5376, 9454, 9458, 9464, 9473

Mallinckrodt: 8600, 8633

2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Trichloroethylene	79-01-6	100%	Yes

3. Hazards Identification

Emergency Overview

WARNING! HARMFUL IF SWALLOWED OR INHALED. AFFECTS HEART, CENTRAL NERVOUS SYSTEM, LIVER AND KIDNEYS. CAUSES SEVERE SKIN IRRITATION. CAUSES IRRITATION TO EYES AND RESPIRATORY TRACT. SUSPECT CANCER HAZARD. MAY CAUSE CANCER. Risk of cancer depends on level and duration of exposure.

SAF-T-DATA^(tm) Ratings (Provided here for your convenience)

Health Rating: 2 - Moderate (Poison) Flammability Rating: 1 - Slight Reactivity Rating: 1 - Slight Contact Rating: 3 - Severe

Lab Protective Equip: GOGGLES & SHIELD; LAB COAT & APRON; VENT HOOD; PROPER GLOVES

Storage Color Code: Blue (Health)

Potential Health Effects

Inhalation

Vapors can irritate the respiratory tract. Causes depression of the central nervous system with symptoms of visual disturbances and mental confusion, incoordination, headache, nausea, euphoria, and dizziness. Inhalation of high concentrations could cause unconsciousness, heart effects, liver effects, kidney effects, and death.

Ingestion:

Cases irritation to gastrointestinal tract. May also cause effects similar to inhalation. May cause coughing, abdominal pain, diarrhea, dizziness, pulmonary edema, unconsciousness. Kidney failure can result in severe cases. Estimated fatal dose is 3-5 ml/kg.

Skin Contact:

Cause irritation, redness and pain. Can cause blistering. Continued skin contact has a defatting action and can produce rough, dry, red skin resulting in secondary infection.

Eye Contact:

Vapors may cause severe irritation with redness and pain. Splashes may cause eye damage.

Chronic Exposure:

Chronic exposures may cause liver, kidney, central nervous system, and peripheral nervous system effects. Workers chronically exposed may exhibit central nervous system depression, intolerance to alcohol, and increased cardiac output. This material is linked to mutagenic effects in humans. This material is also a suspect carcinogen.

Aggravation of Pre-existing Conditions:

Persons with pre-existing skin disorders, cardiovascular disorders, impaired liver or kidney or respiratory function, or central or peripheral nervous system disorders may be more susceptible to the effects of the substance.

4. First Aid Measures

Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Call a physician.

Ingestion:

Induce vomiting immediately as directed by medical personnel. Never give anything by mouth to an unconscious person. Call a physician.

Skin Contact:

Immediately flush skin with plenty of soap and water for at least 15 minutes while removing contaminated clothing and shoes. Get medical attention. Wash clothing before reuse. Thoroughly clean shoes before reuse.

Eve Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

Note to Physician:

Do not administer adrenaline or epinephrine to a victim of chlorinated solvent poisoning

5. Fire Fighting Measures

Fire:

Autoignition temperature: 420C (788F) Flammable limits in air % by volume:

lel: 8; uel: 12.5

Explosion:

A strong ignition source, e. g., a welding torch, can produce ignition. Sealed containers may rupture when heated.

Fire Extinguishing Media:

Use water spray to keep fire exposed containers cool. If substance does ignite, use CO2, dry chemical or foam.

Special Information:

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode. Combustion by-products include phosgene and hydrogen chloride gases. Structural firefighters' clothing provides only limited protection to the combustion products of this material.

6. Accidental Release Measures

Ventilate area of leak or spill. Remove all sources of ignition. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Use non-sparking tools and equipment. Collect liquid in an appropriate container or absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer! US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

7. Handling and Storage

Keep in a tightly closed container, stored in a cool, dry, ventilated area. Protect against physical damage. Isolate from any source of heat or ignition. Isolate from incompatible substances. Containers of this material may be hazardous when empty since they retain product residues (vapors, liquid); observe all warnings and precautions listed for the product.

8. Exposure Controls/Personal Protection

Airborne Exposure Limits:

Trichloroethylene:

-OSHA Permissible Exposure Limit (PEL):

100 ppm (TWA), 200 ppm (Ceiling),

300 ppm/5min/2hr (Max)

-ACGIH Threshold Limit Value (TLV):

10 ppm (TWA) 25 ppm (STEL); A2 Suspected Human Carcinogen.

Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, *Industrial Ventilation, A Manual of Recommended Practices*, most recent edition, for details.

Personal Respirators (NIOSH Approved):

If the exposure limit is exceeded and engineering controls are not feasible, wear a supplied air, full-facepiece respirator, airlined hood, or full-facepiece self-contained breathing apparatus. Breathing air quality must meet the requirements of the OSHA respiratory protection standard (29CFR1910.134). This substance has poor warning properties. Where respirators are required, you must have a written program covering the basic requirements in the OSHA respirator standard. These include training, fit testing, medical approval, cleaning, maintenance, cartridge change schedules, etc. See 29CFR1910.134 for details.

Skin Protection:

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact. Neoprene is a recommended material for personal protective equipment.

Eye Protection:

Use chemical safety goggles and/or a full face shield where splashing is possible. Maintain eye wash fountain and quick-drench facilities in work area.

9. Physical and Chemical Properties

Appearance:

Clear, colorless liquid.

Odor:

Chloroform-like odor.

Solubility:

Practically insoluble in water. Readily miscible in organic solvents.

Specific Gravity:

1.47 @ 20C/4C

pH:

No information found.

% Volatiles by volume @ 21C (70F):

Boiling Point: 87C (189F)

Melting Point:

-73C (-99F)

Vapor Density (Air=1):

Vapor Pressure (mm Hg):

57.8 @ 20C (68F)

Evaporation Rate (BuAc=1):

No information found.

10. Stability and Reactivity

Stable under ordinary conditions of use and storage. Will slowly decompose to hydrochloric acid when exposed to light and moisture.

Hazardous Decomposition Products:

May produce carbon monoxide, carbon dioxide, hydrogen chloride and phosgene when heated to decomposition.

Hazardous Polymerization:

Will not occur.

Incompatibilities:

Strong caustics and alkalis, strong oxidizers, chemically active metals, such as barium, lithium, sodium, magnesium, titanium and beryllium, liquid oxygen.

Conditions to Avoid:

Heat, flame, ignition sources, light, moisture, incompatibles

11. Toxicological Information

Toxicological Data:

Trichloroethylene: Oral rat LD50: 5650 mg/kg; investigated as a tumorigen, mutagen, reproductive effector.

Reproductive Toxicity:

This material has been linked to mutagenic effects in humans.

\Cancer Lists\			
	NTP	Carcinogen	
Ingredient	Known	Anticipated	IARC Category
Trichloroethylene (79-01-6)	No	Yes	2A

12. Ecological Information

Environmental Fate:

When released into the soil, this material may leach into groundwater. When released into the soil, this material is expected to quickly evaporate. When released to water, this material is expected to quickly evaporate. This material has an experimentally-determined bioconcentration factor (BCF) of less than 100. This material is not expected to significantly bioaccumulate. When released into the air, this material may be moderately degraded by reaction with photochemically produced hydroxyl radicals. When released into the air, this material is expected to have a half-life between 1 and 10 days

Environmental Toxicity:

The LC50/96-hour values for fish are between 10 and 100 mg/l. This material is expected to be slightly toxic to aquatic life.

13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved incinerator or disposed in a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

14. Transport Information

Domestic (Land, D.O.T.)

Proper Shipping Name: TRICHLOROETHYLENE

Hazard Class: 6.1 UN/NA: UN1710 Packing Group: III

Information reported for product/size: 4L

International (Water, I.M.O.)

Proper Shipping Name: TRICHLOROETHYLENE

Hazard Class: 6.1 UN/NA: UN1710 Packing Group: III

Information reported for product/size: 4L

15. Regulatory Information

\Chemical Inventory Status - Part : Ingredient					 Australia
Trichloroethylene (79-01-6)					
\Chemical Inventory Status - Part					
Ingredient			Ca	ınada	
Ingredient					
Trichloroethylene (79-01-6)		Yes	Yes	No	Yes
\Federal, State & International Res					 A 313
Ingredient	RQ	TPQ	Lis	t Che	mical Catg.
Trichloroethylene (79-01-6)				;	
\Federal, State & International Reg	gulatio			!\	
Ingredient		A	261.33	8	(d)
Trichloroethylene (79-01-6)				N	
Chemical Weapons Convention: No TSCA 12 SARA 311/312: Acute: Yes Chronic: Yes Reactivity: No (Pure / Liquid)					
(raic / bigaia)					

THIS PRODUCT CONTAINS A CHEMICAL(S) KNOWN TO THE STATE OF CALIFORNIA TO CAUSE CANCER.

Australian Hazchem Code: None allocated.

Poison Schedule: S6

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

16. Other Information

NFPA Ratings: Health: 2 Flammability: 1 Reactivity: 0

Label Hazard Warning:

WARNING! HARMFUL IF SWALLOWED OR INHALED. AFFECTS HEART, CENTRAL NERVOUS SYSTEM, LIVER AND KIDNEYS, CAUSES SEVERE SKIN IRRITATION. CAUSES IRRITATION TO EYES AND RESPIRATORY TRACT. SUSPECT CANCER HAZARD. MAY CAUSE CANCER. Risk of cancer depends on level and duration of exposure.

Label Precautions:

Do not get in eyes, on skin, or on clothing.

Do not breathe vapor.

Keep container closed.

Use only with adequate ventilation.

Wash thoroughly after handling.

Keep away from heat and flame.

Label First Aid:

If swallowed, induce vomiting immediately as directed by medical personnel. Never give anything by mouth to an unconscious person. If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes. Remove contaminated clothing and shoes. Wash clothing before reuse. In all cases call a physician. Note to physician: Do not administer adrenaline or epinephrine to a victim of chlorinated solvent poisoning.

Product Use:

Laboratory Reagent.

Revision Information:

MSDS Section(s) changed since last revision of document include: 8.

Disclaimer:

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, ĒITHĒR EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO

THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

Prepared by: Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)

MSDS Number: T0767 * * * * * Effective Date: 05/19/08 * * * * * Supercedes: 08/16/05

24 Hour Emergency Telephone: 908-859-2151 CHEMTREC: 1-800-424-9300 MSDS Material Safety Data Sheet National Response in Canada CANUTEC: 613-996-6666 Outside U.S. and Canada Chemtrec: 703-527-3887 Mallinckrodt Baker, Inc. 222 Red School Lane Phillipsburg, NJ 08865 Mallinckrodt CHEMICALS NOTE: CHEMTREC, CANUTEC and Nation Response Center emergency numbers to be used only in the event of chemical emergencies involving a spill, leak, fire, exposure or accident

All non-emergency questions should be directed to Customer Service (1-800-582-2537) for assistance

TETRACHLOROETHYLENE

1. Product Identification

Synonyms: ethylene tetrachloride; tetrachloroethene; perchloroethylene; carbon bichloride; carbon dichloride

CAS No.: 127-18-4 Molecular Weight: 165.83 Chemical Formula: C12C:CC12

Product Codes:

J.T. Baker: 9218, 9360, 9453, 9465, 9469

Mallinckrodt: 1933, 8058

2. Composition/Information on Ingredients

Ingredient	CAS No	Percent	Hazardous
Tetrachloroethylene	127-18-4	99 - 100%	Yes

3. Hazards Identification

Emergency Overview

WARNING! HARMFUL IF SWALLOWED, INHALED OR ABSORBED THROUGH SKIN. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. AFFECTS CENTRAL NERVOUS SYSTEM, LIVER AND KIDNEYS. SUSPECT CANCER HAZARD. MAY CAUSE CANCER. Risk of cancer depends on level and duration of exposure.

 $SAF\text{-}T\text{-}DATA^{(tm)} \text{ Ratings (Provided here for your convenience)}$

Health Rating: 2 - Moderate (Poison) Flammability Rating: 0 - None Reactivity Rating: 1 - Slight Contact Rating: 2 - Moderate (Life)

Lab Protective Equip: GOGGLES; LAB COAT; VENT HOOD; PROPER GLOVES

Storage Color Code: Blue (Health)

Potential Health Effects

Irritating to the upper respiratory tract. Giddiness, headache, intoxication, nausea and vomiting may follow the inhalation of large amounts while massive amounts can cause breathing arrest, liver and kidney damage, and death. Concentrations of 600 ppm and more can affect the central nervous system after a few

Ingestion:

Not highly toxic by this route because of low water solubility. Used as an oral dosage for hookworm (1 to 4 ml). Causes abdominal pain, nausea, diarrhea, headache, and dizziness.

Skin Contact:

Causes irritation to skin. Symptoms include redness, itching, and pain. May be absorbed through the skin with possible systemic effects.

Eye Contact:

Causes irritation, redness, and pain.

Chronic Exposure:

May cause liver, kidney or central nervous system damage after repeated or prolonged exposures. Suspected cancer risk from animal studies.

Aggravation of Pre-existing Conditions:

Persons with pre-existing skin disorders or eye problems or impaired liver or kidney function may be more susceptible to the effects of the substance. The use of alcoholic beverages enhances the toxic effects.

4. First Aid Measures

Inhalation:

Remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. Call a physician.

Aspiration hazard. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. Get

Skin Contact:

Wash skin with soap or mild detergent and water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. Call a physician.

Eye Contact:

Immediately flush eyes with plenty of water for at least 15 minutes, lifting lower and upper eyelids occasionally. Get medical attention immediately.

Do not administer adrenaline or epinephrine to a victim of chlorinated solvent poisoning.

5. Fire Fighting Measures

Not considered to be a fire hazard but becomes hazardous in a fire situation because of vapor generation and possible degradation to phosgene (highly toxic) and hydrogen chloride (corrosive). Vapors are heavier than air and collect in low-lying areas.

Not considered to be an explosion hazard. Containers may explode when involved in a fire.

Fire Extinguishing Media:

Use any means suitable for extinguishing surrounding fire. Water spray may be used to keep fire exposed containers cool.

Special Information:

In the event of a fire, wear full protective clothing and NIOSH-approved self-contained breathing apparatus with full facepiece operated in the pressure demand or other positive pressure mode.

6. Accidental Release Measures

Ventilate area of leak or spill. Wear appropriate personal protective equipment as specified in Section 8. Isolate hazard area. Keep unnecessary and unprotected personnel from entering. Contain and recover liquid when possible. Neutralize with alkaline material (soda ash, lime), then absorb with an inert material (e. g., vermiculite, dry sand, earth), and place in a chemical waste container. Do not use combustible materials, such as saw dust. Do not flush to sewer! US Regulations (CERCLA) require reporting spills and releases to soil, water and air in excess of reportable quantities. The toll free number for the US Coast Guard National Response Center is (800) 424-8802.

7. Handling and Storage

Store in a cool, dry, ventilated area away from sources of heat or ignition. Isolate from flammable materials. Protect from direct sunlight. Wear special protective equipment (Sec. 8) for maintenance break-in or where exposures may exceed established exposure levels. Wash hands, face, forearms and neck when exiting restricted areas. Shower, dispose of outer clothing, change to clean garments at the end of the day. Avoid cross-contamination of street clothes. Wash hands before eating and do not eat, drink, or smoke in workplace. Containers of this material may be hazardous when empty since they retain product residues (yapors, liquid); observe all warnings and precautions listed for the product.

8. Exposure Controls/Personal Protection

Airborne Exposure Limits:

-OSHA Permissible Exposure Limit (PEL):

100 ppm (TWA), 200 ppm (ceiling),

300 ppm/5min/3-hour (max)

-ACGIH Threshold Limit Value (TLV):

25 ppm (TWA), 100 ppm (STEL); listed as A3, animal carcinogen

Ventilation System:

A system of local and/or general exhaust is recommended to keep employee exposures below the Airborne Exposure Limits. Local exhaust ventilation is generally preferred because it can control the emissions of the contaminant at its source, preventing dispersion of it into the general work area. Please refer to the ACGIH document, Industrial Ventilation, A Manual of Recommended Practices, most recent edition, for details.

Personal Respirators (NIOSH Approved):

If the exposure limit is exceeded, wear a supplied air, full-facepiece respirator, airlined hood, or full-facepiece self-contained breathing apparatus.

Skin Protection:

Wear impervious protective clothing, including boots, gloves, lab coat, apron or coveralls, as appropriate, to prevent skin contact.

Eve Protection:

Use chemical safety goggles and/or full face shield where dusting or splashing of solutions is possible. Maintain eye wash fountain and quick-drench facilities in

9. Physical and Chemical Properties

Appearance:

Clear, colorless liquid. Odor: Ethereal odor. Solubility: 0.015 g in 100 g of water. Specific Gravity: 1.62 @ 20C/4C pH: No information found. % Volatiles by volume @ 21C (70F): 100 **Boiling Point:** 121C (250F) **Melting Point:** -19C (-2F) Vapor Density (Air=1): Vapor Pressure (mm Hg): 18 @ 25C (77F) Evaporation Rate (BuAc=1): 0.33 (trichloroethylene = 1)

10. Stability and Reactivity

Stability:

Stable under ordinary conditions of use and storage. Slowly decomposed by light. Deteriorates rapidly in warm, moist climates.

Hazardous Decomposition Products:

Carbon dioxide and carbon monoxide may form when heated to decomposition. Hydrogen chloride gas and phosgene gas may be formed upon heating.

Decomposes with moisture to yield trichloroacetic acid and hydrochloric acid.

Hazardous Polymerization:

Will not occur.

Incompatibilities:

Strong acids, strong oxidizers, strong alkalis, especially NaOH, KOH; finely divided metals, especially zinc, barium, lithium. Slowly corrodes aluminum, iron and zinc.

Conditions to Avoid:

Moisture, light, heat and incompatibles.

11. Toxicological Information

Oral rat LD50: 2629 mg/kg; inhalation rat LC50: 4100 ppm/6H; investigated as a tumorigen, mutagen, reproductive effector.

\Cancer Lists\			
	NTP	Carcinogen	
Ingredient	Known	Anticipated	IARC Category
Tetrachloroethylene (127-18-4)	No	Yes	2A

12. Ecological Information

Environmental Fate:

When released into the soil, this material is expected to quickly evaporate. When released into the soil, this material may leach into groundwater. When released into the soil, this material may biodegrade to a moderate extent. When released to water, this material is expected to quickly evaporate. When released into water, this material is not expected to biodegrade. This material is not expected to significantly bioaccumulate. When released into the air, this material may be moderately degraded by reaction with photochemically produced hydroxyl radicals.

Environmental Toxicity:

The LC50/96-hour values for fish are between 1 and 10 mg/l. The LC50/96-hour values for fish are between 10 and 100 mg/l. This material is expected to be toxic to aquatic life.

13. Disposal Considerations

Whatever cannot be saved for recovery or recycling should be handled as hazardous waste and sent to a RCRA approved incinerator or disposed in a RCRA approved waste facility. Processing, use or contamination of this product may change the waste management options. State and local disposal regulations may differ from federal disposal regulations. Dispose of container and unused contents in accordance with federal, state and local requirements.

14. Transport Information

Domestic (Land, D.O.T.)

Proper Shipping Name: TETRACHLOROETHYLENE

Hazard Class: 6.1 UN/NA: UN1897 Packing Group: III Information reported for product/size: 4L

International (Water, I.M.O.)

Proper Shipping Name: TETRACHLOROETHYLENE

Hazard Class: 6.1 UN/NA: UN1897 Packing Group: III

Information reported for product/size: 4L

International (Air, I.C.A.O.)

Proper Shipping Name: TETRACHLOROETHYLENE

Hazard Class: 6.1 UN/NA: UN1897 Packing Group: III

Information reported for product/size: 4L

15. Regulatory Information

\Chemical Inventory Status - Part Ingredient		TSCA	EC	Japan	Australia
Tetrachloroethylene (127-18-4)					Yes
\Chemical Inventory Status - Part 2\					
Ingredient			DSL	NDSL	Phil.
Tetrachloroethylene (127-18-4)					Yes
\Federal, State & International Re					A 313
Ingredient	RQ	TPQ	Li	st Che	mical Catg.
Tetrachloroethylene (127-18-4)				s	
\Federal, State & International Regulations - Part 2\					
Ingredient			-RCRA1 261.33 8		(d)
Tetrachloroethylene (127-18-4)				 N	
Chemical Weapons Convention: No TSCA 12 SARA 311/312: Acute: Yes Chronic: Yes Reactivity: No (Pure / Liquid)					

WARNING:

THIS PRODUCT CONTAINS A CHEMICAL(S) KNOWN TO THE STATE OF CALIFORNIA TO CAUSE CANCER.

Australian Hazchem Code: 2[Z] Poison Schedule: None allocated.

WHMIS:

This MSDS has been prepared according to the hazard criteria of the Controlled Products Regulations (CPR) and the MSDS contains all of the information required by the CPR.

16. Other Information

NFPA Ratings: Health: 2 Flammability: 0 Reactivity: 0

Label Hazard Warning:

WARNING! HARMFUL IF SWALLOWED, INHALED OR ABSORBED THROUGH SKIN. CAUSES IRRITATION TO SKIN, EYES AND RESPIRATORY TRACT. AFFECTS CENTRAL NERVOUS SYSTEM, LIVER AND KIDNEYS. SUSPECT CANCER HAZARD. MAY CAUSE CANCER. Risk of cancer depends on level and duration of exposure.

Label Precautions:

Do not get in eyes, on skin, or on clothing.

Do not breathe vapor or mist.

Keep container closed.

Use only with adequate ventilation.

Wash thoroughly after handling.

Label First Aid:

If inhaled, remove to fresh air. If not breathing, give artificial respiration. If breathing is difficult, give oxygen. If swallowed, DO NOT INDUCE VOMITING. Give large quantities of water. Never give anything by mouth to an unconscious person. In case of contact, immediately flush eyes or skin with plenty of water for at least 15 minutes while removing contaminated clothing and shoes. Wash clothing before reuse. In all cases call a physician.

Product Use:

Laboratory Reagent.

Revision Information:

No Changes

Disclaimer:

Mallinckrodt Baker, Inc. provides the information contained herein in good faith but makes no representation as to its comprehensiveness or accuracy. This document is intended only as a guide to the appropriate precautionary handling of the material by a properly trained person using this product. Individuals receiving the information must exercise their independent judgment in determining its appropriateness for a particular purpose MALLINCKRODT BAKER, INC. MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING

WITHOUT LIMITATION ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE WITH RESPECT TO THE INFORMATION SET FORTH HEREIN OR THE PRODUCT TO WHICH THE INFORMATION REFERS. ACCORDINGLY, MALLINCKRODT BAKER, INC. WILL NOT BE RESPONSIBLE FOR DAMAGES RESULTING FROM USE OF OR RELIANCE UPON THIS INFORMATION.

Prepared by: Environmental Health & Safety Phone Number: (314) 654-1600 (U.S.A.)